Closed-form formulas vs. PDE based numerical solution for the FRAP data processing: Theoretical and practical comparison
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F17%3A43895285" target="_blank" >RIV/60076658:12520/17:43895285 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/17:00473666
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0898122117300767" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0898122117300767</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.camwa.2017.02.010" target="_blank" >10.1016/j.camwa.2017.02.010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Closed-form formulas vs. PDE based numerical solution for the FRAP data processing: Theoretical and practical comparison
Popis výsledku v původním jazyce
Fluorescence recovery after photobleaching (FRAP) is a widely used method to analyze (usually using fluorescence microscopy) the mobility of either fluorescently tagged or autofluorescent (e.g., photosynthetic) proteins in living cells. The FRAP method resides in imaging the recovery of fluorescence intensity over time in a region of interest previously bleached by a high-intensity laser pulse. While the basic principles of FRAP are simple and the experimental setup is usually fixed, quantitative FRAP data analysis is not well developed. Different models and numerical procedures are used for the underlying model parameter estimation without knowledge of how robust the methods are, i.e., the parameter inference step is not currently well established. In this paper we rigorously formulate the inverse problem of model parameter estimation (including the sensitivity analysis), making possible the comparison of different FRAP parameter inference methods. Then, in a study on simulated data, we focus on how three different methods for inference influence the error in parameter estimation. We demonstrate both theoretically and empirically that our new method based on a solution of a general initial boundary value problem for the Fick diffusion partial differential equation exhibits less bias and narrower confidence intervals of the estimated diffusion parameter, than two closed formula methods.
Název v anglickém jazyce
Closed-form formulas vs. PDE based numerical solution for the FRAP data processing: Theoretical and practical comparison
Popis výsledku anglicky
Fluorescence recovery after photobleaching (FRAP) is a widely used method to analyze (usually using fluorescence microscopy) the mobility of either fluorescently tagged or autofluorescent (e.g., photosynthetic) proteins in living cells. The FRAP method resides in imaging the recovery of fluorescence intensity over time in a region of interest previously bleached by a high-intensity laser pulse. While the basic principles of FRAP are simple and the experimental setup is usually fixed, quantitative FRAP data analysis is not well developed. Different models and numerical procedures are used for the underlying model parameter estimation without knowledge of how robust the methods are, i.e., the parameter inference step is not currently well established. In this paper we rigorously formulate the inverse problem of model parameter estimation (including the sensitivity analysis), making possible the comparison of different FRAP parameter inference methods. Then, in a study on simulated data, we focus on how three different methods for inference influence the error in parameter estimation. We demonstrate both theoretically and empirically that our new method based on a solution of a general initial boundary value problem for the Fick diffusion partial differential equation exhibits less bias and narrower confidence intervals of the estimated diffusion parameter, than two closed formula methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers & Mathematics with Applications
ISSN
0898-1221
e-ISSN
—
Svazek periodika
73
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
1673-1683
Kód UT WoS článku
000400199400003
EID výsledku v databázi Scopus
2-s2.0-85014215071