Comparative Performance Analysis of Support Vector Machine, Random Forest, Logistic Regression and k-Nearest Neighbours in Rainbow Trout (Oncorhynchus Mykiss) Classification Using Image-Based Features
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F18%3A43897163" target="_blank" >RIV/60076658:12520/18:43897163 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.mdpi.com/1424-8220/18/4/1027/htm" target="_blank" >http://www.mdpi.com/1424-8220/18/4/1027/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s18041027" target="_blank" >10.3390/s18041027</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparative Performance Analysis of Support Vector Machine, Random Forest, Logistic Regression and k-Nearest Neighbours in Rainbow Trout (Oncorhynchus Mykiss) Classification Using Image-Based Features
Popis výsledku v původním jazyce
The main aim of this study was to develop a new objective method for evaluating the impacts of different diets on the live fish skin using image-based features. In total, one-hundred and sixty rainbow trout (Oncorhynchus mykiss) were fed either a fish-meal based diet (80 fish) or a 100% plant-based diet (80 fish) and photographed using consumer-grade digital camera. Twenty-three colour features and four texture features were extracted. Four different classification methods were used to evaluate fish diets including Random forest (RF), Support vector machine (SVM), Logistic regression (LR) and k-Nearest neighbours (k-NN). The SVM with radial based kernel provided the best classifier with correct classification rate (CCR) of 82% and Kappa coefficient of 0.65. Although the both LR and RF methods were less accurate than SVM, they achieved good classification with CCR 75% and 70% respectively. The k-NN was the least accurate (40%) classification model. Overall, it can be concluded that consumer-grade digital cameras could be employed as the fast, accurate and non-invasive sensor for classifying rainbow trout based on their diets. Furthermore, these was a close association between image-based features and fish diet received during cultivation. These procedures can be used as non-invasive, accurate and precise approaches for monitoring fish status during the cultivation by evaluating diet's effects on fish skin.
Název v anglickém jazyce
Comparative Performance Analysis of Support Vector Machine, Random Forest, Logistic Regression and k-Nearest Neighbours in Rainbow Trout (Oncorhynchus Mykiss) Classification Using Image-Based Features
Popis výsledku anglicky
The main aim of this study was to develop a new objective method for evaluating the impacts of different diets on the live fish skin using image-based features. In total, one-hundred and sixty rainbow trout (Oncorhynchus mykiss) were fed either a fish-meal based diet (80 fish) or a 100% plant-based diet (80 fish) and photographed using consumer-grade digital camera. Twenty-three colour features and four texture features were extracted. Four different classification methods were used to evaluate fish diets including Random forest (RF), Support vector machine (SVM), Logistic regression (LR) and k-Nearest neighbours (k-NN). The SVM with radial based kernel provided the best classifier with correct classification rate (CCR) of 82% and Kappa coefficient of 0.65. Although the both LR and RF methods were less accurate than SVM, they achieved good classification with CCR 75% and 70% respectively. The k-NN was the least accurate (40%) classification model. Overall, it can be concluded that consumer-grade digital cameras could be employed as the fast, accurate and non-invasive sensor for classifying rainbow trout based on their diets. Furthermore, these was a close association between image-based features and fish diet received during cultivation. These procedures can be used as non-invasive, accurate and precise approaches for monitoring fish status during the cultivation by evaluating diet's effects on fish skin.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors
ISSN
1424-8220
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
000435574800099
EID výsledku v databázi Scopus
2-s2.0-85044834352