Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Spectral imaging application to discriminate different diets of live rainbow trout (Oncorhynchus mykiss)

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F19%3A43899360" target="_blank" >RIV/60076658:12520/19:43899360 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0168169919303011" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0168169919303011</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.compag.2019.104949" target="_blank" >10.1016/j.compag.2019.104949</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Spectral imaging application to discriminate different diets of live rainbow trout (Oncorhynchus mykiss)

  • Popis výsledku v původním jazyce

    The main aim of this study was to evaluate the feasibility of hyperspectral imagery for determining the correlation between fish skin changes and different diets. Rainbow trout (Oncorhynchus mykiss) were fed either a commercial based diet (N = 80) or a 100% plant-based diet (N = 80). Hyperspectral images were made using a push-broom hyperspectral imaging system in the spectral region of 394-1009 nm. All images were calibrated using dark and white reference, and the average spectral data from the region of interest were extracted. Seven spectral pre-treatment methods were used, including Savitzky-Golay (SG), First Derivative (FD), Second Derivative (SD), Standard Normal Variate (SNV), Multiplicative Scatter Correction(MSC) and Continuum removal (CR) then a support vector machine (SVM) with linear kernel was applied to establish the classification models. Overall classification models developed from full wavelengths with different preprocessing methods showed good performance (Correct Classification Rate (CCR) = 0.83, Kappa = 0.66) when coupled with SG and SD or SG and MSC. The overall results indicate that the integration of Vis/NIR hyperspectral imaging system and machine learning algorithms have promise for discriminating different diets based on the live fish skin. These procedures can be used to not only identify the diet used for fish feeding in the case where we are not sure but also monitor different diets impacts on live fish skin for more precise monitoring of fish status during cultivation and ultimately for better implementation of precision fish farming.

  • Název v anglickém jazyce

    Spectral imaging application to discriminate different diets of live rainbow trout (Oncorhynchus mykiss)

  • Popis výsledku anglicky

    The main aim of this study was to evaluate the feasibility of hyperspectral imagery for determining the correlation between fish skin changes and different diets. Rainbow trout (Oncorhynchus mykiss) were fed either a commercial based diet (N = 80) or a 100% plant-based diet (N = 80). Hyperspectral images were made using a push-broom hyperspectral imaging system in the spectral region of 394-1009 nm. All images were calibrated using dark and white reference, and the average spectral data from the region of interest were extracted. Seven spectral pre-treatment methods were used, including Savitzky-Golay (SG), First Derivative (FD), Second Derivative (SD), Standard Normal Variate (SNV), Multiplicative Scatter Correction(MSC) and Continuum removal (CR) then a support vector machine (SVM) with linear kernel was applied to establish the classification models. Overall classification models developed from full wavelengths with different preprocessing methods showed good performance (Correct Classification Rate (CCR) = 0.83, Kappa = 0.66) when coupled with SG and SD or SG and MSC. The overall results indicate that the integration of Vis/NIR hyperspectral imaging system and machine learning algorithms have promise for discriminating different diets based on the live fish skin. These procedures can be used to not only identify the diet used for fish feeding in the case where we are not sure but also monitor different diets impacts on live fish skin for more precise monitoring of fish status during cultivation and ultimately for better implementation of precision fish farming.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2018099" target="_blank" >LM2018099: Jihočeské výzkumné centrum akvakultury a biodiverzity hydrocenóz</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers and electronic in agriculture

  • ISSN

    0168-1699

  • e-ISSN

  • Svazek periodika

    165

  • Číslo periodika v rámci svazku

    neuveden

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    6

  • Strana od-do

  • Kód UT WoS článku

    000488143100020

  • EID výsledku v databázi Scopus

    2-s2.0-85071045472