Advanced integration of fluid dynamics and photosynthetic reaction kinetics for microalgae culture systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F18%3A43898481" target="_blank" >RIV/60076658:12520/18:43898481 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21220/18:00324350
Výsledek na webu
<a href="https://bmcsystbiol.biomedcentral.com/articles/10.1186/s12918-018-0611-9" target="_blank" >https://bmcsystbiol.biomedcentral.com/articles/10.1186/s12918-018-0611-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s12918-018-0611-9" target="_blank" >10.1186/s12918-018-0611-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Advanced integration of fluid dynamics and photosynthetic reaction kinetics for microalgae culture systems
Popis výsledku v původním jazyce
Background: Photosynthetic microalgae have been in the spotlight of biotechnological production (biofuels, lipids, etc), however, current barriers in mass cultivation of microalgae are limiting its successful industrialization. Therefore, a mathematical model integrating both the biological and hydrodynamical parts of the cultivation process may improve our understanding of relevant phenomena, leading to further optimization of the microalgae cultivation. Results: We introduce a unified multidisciplinary simulation tool for microalgae culture systems, particularly the photobioreactors. Our approach describes changes of cell growth determined by dynamics of heterogeneous environmental conditions such as irradiation and mixing of the culture. Presented framework consists of (i) a simplified model of microalgae growth in a culture system (the advection-diffusion-reaction system within a phenomenological model of photosynthesis and photoinhibition), (ii) the fluid dynamics (Navier-Stokes equations), and (iii) the irradiance field description (Beer-Lambert law). To validate the method, a simple case study leading to hydrodynamically induced fluctuating light conditions was chosen. The integration of computational fluid dynamics (ANSYS Fluent) revealed the inner property of the system, the flashing light enhancement phenomenon, known from experiments. Conclusion: Our physically accurate model of microalgae culture naturally exhibits features of real system, can be applied to any geometry of microalgae mass cultivation and thus is suitable for biotechnological applications.
Název v anglickém jazyce
Advanced integration of fluid dynamics and photosynthetic reaction kinetics for microalgae culture systems
Popis výsledku anglicky
Background: Photosynthetic microalgae have been in the spotlight of biotechnological production (biofuels, lipids, etc), however, current barriers in mass cultivation of microalgae are limiting its successful industrialization. Therefore, a mathematical model integrating both the biological and hydrodynamical parts of the cultivation process may improve our understanding of relevant phenomena, leading to further optimization of the microalgae cultivation. Results: We introduce a unified multidisciplinary simulation tool for microalgae culture systems, particularly the photobioreactors. Our approach describes changes of cell growth determined by dynamics of heterogeneous environmental conditions such as irradiation and mixing of the culture. Presented framework consists of (i) a simplified model of microalgae growth in a culture system (the advection-diffusion-reaction system within a phenomenological model of photosynthesis and photoinhibition), (ii) the fluid dynamics (Navier-Stokes equations), and (iii) the irradiance field description (Beer-Lambert law). To validate the method, a simple case study leading to hydrodynamically induced fluctuating light conditions was chosen. The integration of computational fluid dynamics (ANSYS Fluent) revealed the inner property of the system, the flashing light enhancement phenomenon, known from experiments. Conclusion: Our physically accurate model of microalgae culture naturally exhibits features of real system, can be applied to any geometry of microalgae mass cultivation and thus is suitable for biotechnological applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10610 - Biophysics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BMC Systems Biology
ISSN
1752-0509
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
Suplement 5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000452039500001
EID výsledku v databázi Scopus
2-s2.0-85056712937