Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Effect of hydrodynamic conditions in a model of cultivation for a hybrid tubular photobioreactor producing microalgae

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00358521" target="_blank" >RIV/68407700:21220/22:00358521 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Effect of hydrodynamic conditions in a model of cultivation for a hybrid tubular photobioreactor producing microalgae

  • Popis výsledku v původním jazyce

    Mixing the culture medium in photobioreactors producing microalgal biomass is a key factor for improving the cultivation process and overall production. Appropriate mixing allows uniform access of microalgae cells to nutrients and light radiation. In this study, a 3D numerical model simulating the hydrodynamic conditions in a hybrid horizontal tubular photobioreactor was developed to investigate in detail the mixing of the culture medium under different operating conditions. The hydrodynamic model was experimentally validated on a pilot photobioreactor processing 11.7 m3 of culture medium. Using the developed hydrodynamic model, it is possible to simulate the movement of microalgae cells in the transparent tubes of the photobioreactor. The cell trajectory from the hydrodynamic model was then integrated into a biokinetic model that can simulate the effect of mixing intensity on the light distribution in the culture medium and subsequently on the biomass production from microalgae itself. The results of the numerical simulations showed that when the flow rate of the culture medium is increased, the mixing in the transparent tubes becomes more intense and the microalgae cells are thus more frequently exposed to incident light. The results of the numerical simulations were validated by experimental measurements. By intensifying mixing, microalgae cells can be irradiated more efficiently, leading to an increase in biomass production from microalgae. The developed multiphysics model, which links hydrodynamic and biokinetic models, can be used to optimize the design and operational parameters of existing cultivation systems or to design new photobioreactors.

  • Název v anglickém jazyce

    Effect of hydrodynamic conditions in a model of cultivation for a hybrid tubular photobioreactor producing microalgae

  • Popis výsledku anglicky

    Mixing the culture medium in photobioreactors producing microalgal biomass is a key factor for improving the cultivation process and overall production. Appropriate mixing allows uniform access of microalgae cells to nutrients and light radiation. In this study, a 3D numerical model simulating the hydrodynamic conditions in a hybrid horizontal tubular photobioreactor was developed to investigate in detail the mixing of the culture medium under different operating conditions. The hydrodynamic model was experimentally validated on a pilot photobioreactor processing 11.7 m3 of culture medium. Using the developed hydrodynamic model, it is possible to simulate the movement of microalgae cells in the transparent tubes of the photobioreactor. The cell trajectory from the hydrodynamic model was then integrated into a biokinetic model that can simulate the effect of mixing intensity on the light distribution in the culture medium and subsequently on the biomass production from microalgae itself. The results of the numerical simulations showed that when the flow rate of the culture medium is increased, the mixing in the transparent tubes becomes more intense and the microalgae cells are thus more frequently exposed to incident light. The results of the numerical simulations were validated by experimental measurements. By intensifying mixing, microalgae cells can be irradiated more efficiently, leading to an increase in biomass production from microalgae. The developed multiphysics model, which links hydrodynamic and biokinetic models, can be used to optimize the design and operational parameters of existing cultivation systems or to design new photobioreactors.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    20402 - Chemical process engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000753" target="_blank" >EF16_019/0000753: Centrum výzkumu nízkouhlíkových energetických technologií</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů