Energetics of Fish Spermatozoa
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F20%3A43901824" target="_blank" >RIV/60076658:12520/20:43901824 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Energetics of Fish Spermatozoa
Popis výsledku v původním jazyce
Fish spermatozoa need to perceive a signal from the external milieu so as to activate their motility. The osmolarity and/or ionic composition of the marine or freshwater surrounding fish control the activation of fish sperm flagella at spawning. Flagella motility is energy dependent and the amount of energy stored in the spermatozoon prior to its activation is a main factor that will sustain their vigorous motility but for only a short period (one to several minutes) in fish until partial exhaustion of this energy stops motility. Storage of energy mostly results from mitochondrial respiration that generates ATP. Energy metabolism also involves other compounds such as creatine–phosphate that contribute to the maintenance of the intracellular energy level in connection with ATP. In few species, especially internally fertilizing ones, part of the energy comes from glycolysis. For efficient motility of swimming fish spermatozoa, the ATP usage (chemical hydrolysis) is mainly balanced by the physical power developed by the flagellum against viscosity forces: this balance sheet is also discussed in this chapter. The rest of ATP consumption is needed by fish spermatozoa for “housekeeping” tasks such as maintaining the ionic balance across the cell membrane as example. The cryopreservation process induces deleterious perturbations at several levels of the energy metabolic network such as damage to mitochondria, leaking of cell membrane, and damage to the flagella motility apparatus that altogether lead to a serious decrease in the percentage of motile cells and consequently the fertilizing ability.
Název v anglickém jazyce
Energetics of Fish Spermatozoa
Popis výsledku anglicky
Fish spermatozoa need to perceive a signal from the external milieu so as to activate their motility. The osmolarity and/or ionic composition of the marine or freshwater surrounding fish control the activation of fish sperm flagella at spawning. Flagella motility is energy dependent and the amount of energy stored in the spermatozoon prior to its activation is a main factor that will sustain their vigorous motility but for only a short period (one to several minutes) in fish until partial exhaustion of this energy stops motility. Storage of energy mostly results from mitochondrial respiration that generates ATP. Energy metabolism also involves other compounds such as creatine–phosphate that contribute to the maintenance of the intracellular energy level in connection with ATP. In few species, especially internally fertilizing ones, part of the energy comes from glycolysis. For efficient motility of swimming fish spermatozoa, the ATP usage (chemical hydrolysis) is mainly balanced by the physical power developed by the flagellum against viscosity forces: this balance sheet is also discussed in this chapter. The rest of ATP consumption is needed by fish spermatozoa for “housekeeping” tasks such as maintaining the ionic balance across the cell membrane as example. The cryopreservation process induces deleterious perturbations at several levels of the energy metabolic network such as damage to mitochondria, leaking of cell membrane, and damage to the flagella motility apparatus that altogether lead to a serious decrease in the percentage of motile cells and consequently the fertilizing ability.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10608 - Biochemistry and molecular biology
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Cryopreservation of Fish Gametes
ISBN
978-981-15-4024-0
Počet stran výsledku
48
Strana od-do
69-116
Počet stran knihy
352
Název nakladatele
Springer Nature Singapore Pte Ltd.
Místo vydání
Singapore
Kód UT WoS kapitoly
—