Expertomica metabolite profiling: getting more information from LC-MS using the stochastic systems approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12640%2F09%3A00010010" target="_blank" >RIV/60076658:12640/09:00010010 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Expertomica metabolite profiling: getting more information from LC-MS using the stochastic systems approach
Popis výsledku v původním jazyce
Mass spectrometers are sophisticated,. ne instruments which are essential in a variety applications. However, the data they produce are usually interpreted in a rather primitive way, without considering the accuracy of this data and the potential errorsin identifying peaks. Our new approach corrects this situation by dividing the LC-MS output into three components: (i) signature of the analyte, (ii) random noise and (iii) systemic noise. The systemic noise is related to the instrument and to the particular experiment; its characteristics change in time and depend on the analyzed substance. Working with these components allows us to quantify the probability of peak errors and, at the same time, to retrieve some peaks which get lost in the noise when using the existing methods. Our software tool, Expertomica metabolite pro. ling, automatically evaluates the given instrument, detects compounds and calculates the probability of individual peaks. It does not need any artificial user-define
Název v anglickém jazyce
Expertomica metabolite profiling: getting more information from LC-MS using the stochastic systems approach
Popis výsledku anglicky
Mass spectrometers are sophisticated,. ne instruments which are essential in a variety applications. However, the data they produce are usually interpreted in a rather primitive way, without considering the accuracy of this data and the potential errorsin identifying peaks. Our new approach corrects this situation by dividing the LC-MS output into three components: (i) signature of the analyte, (ii) random noise and (iii) systemic noise. The systemic noise is related to the instrument and to the particular experiment; its characteristics change in time and depend on the analyzed substance. Working with these components allows us to quantify the probability of peak errors and, at the same time, to retrieve some peaks which get lost in the noise when using the existing methods. Our software tool, Expertomica metabolite pro. ling, automatically evaluates the given instrument, detects compounds and calculates the probability of individual peaks. It does not need any artificial user-define
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BO - Biofyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Bioinformatics
ISSN
1367-4803
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
20
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
4
Strana od-do
—
Kód UT WoS článku
000270685200030
EID výsledku v databázi Scopus
—