Soil warming during winter period enhanced soil N and P availability and leaching in alpine grasslands: A transplant study.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F22%3A00560487" target="_blank" >RIV/60077344:_____/22:00560487 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60076658:12310/22:43905010
Výsledek na webu
<a href="https://doi.org/10.1371/journal.pone.0272143" target="_blank" >https://doi.org/10.1371/journal.pone.0272143</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0272143" target="_blank" >10.1371/journal.pone.0272143</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Soil warming during winter period enhanced soil N and P availability and leaching in alpine grasslands: A transplant study.
Popis výsledku v původním jazyce
Alpine meadows are strongly affected by climate change. Increasing air temperature prolongs the growing season and together with changing precipitation patterns alters soil temperature during winter. To estimate the effect of climate change on soil nutrient cycling, we conducted a field experiment. We transferred undisturbed plant-soil mesocosms from two wind-exposed alpine meadows at similar to 2100 m a.s.l. to more sheltered plots, situated similar to 300-400 m lower in the same valleys. The annual mean air temperature was 2 degrees C higher at the lower plots and soils that were normally frozen at the original plots throughout winters were warmed to similar to 0 degrees C due to the insulation provided by continuous snow cover. After two years of exposure, we analyzed the nutrient content in plants, and changes in soil bacterial community, decomposition, mineralization, and nutrient availability. Leaching of N and P from the soils was continuously measured using ion-exchange resin traps. Warming of soils to similar to 0 degrees C during the winter allowed the microorganisms to remain active, their metabolic processes were not restricted by soil freezing. This change accelerated nutrient cycling, as evidenced by increased soil N and P availability, their higher levels in plants, and elevated leaching. In addition, root exudation and preferential enzymatic mining of P over C increased. However, any significant changes in microbial biomass, bacterial community composition, decomposition rates, and mineralization during the growing season were not observed, suggesting considerable structural and functional resilience of the microbial community. In summary, our data suggest that changes in soil temperature and snow cover duration during winter periods are critical for altering microbially-mediated processes (even at unchanged soil microbial community and biomass) and may enhance nutrient availability in alpine meadows. Consequently, ongoing climate change, which leads to soil warming and decreasing snow insulation, has a potential to significantly alter nutrient cycling in alpine and subalpine meadows compared to the current situation and increase the year-on-year variability in nutrient availability and leaching.
Název v anglickém jazyce
Soil warming during winter period enhanced soil N and P availability and leaching in alpine grasslands: A transplant study.
Popis výsledku anglicky
Alpine meadows are strongly affected by climate change. Increasing air temperature prolongs the growing season and together with changing precipitation patterns alters soil temperature during winter. To estimate the effect of climate change on soil nutrient cycling, we conducted a field experiment. We transferred undisturbed plant-soil mesocosms from two wind-exposed alpine meadows at similar to 2100 m a.s.l. to more sheltered plots, situated similar to 300-400 m lower in the same valleys. The annual mean air temperature was 2 degrees C higher at the lower plots and soils that were normally frozen at the original plots throughout winters were warmed to similar to 0 degrees C due to the insulation provided by continuous snow cover. After two years of exposure, we analyzed the nutrient content in plants, and changes in soil bacterial community, decomposition, mineralization, and nutrient availability. Leaching of N and P from the soils was continuously measured using ion-exchange resin traps. Warming of soils to similar to 0 degrees C during the winter allowed the microorganisms to remain active, their metabolic processes were not restricted by soil freezing. This change accelerated nutrient cycling, as evidenced by increased soil N and P availability, their higher levels in plants, and elevated leaching. In addition, root exudation and preferential enzymatic mining of P over C increased. However, any significant changes in microbial biomass, bacterial community composition, decomposition rates, and mineralization during the growing season were not observed, suggesting considerable structural and functional resilience of the microbial community. In summary, our data suggest that changes in soil temperature and snow cover duration during winter periods are critical for altering microbially-mediated processes (even at unchanged soil microbial community and biomass) and may enhance nutrient availability in alpine meadows. Consequently, ongoing climate change, which leads to soil warming and decreasing snow insulation, has a potential to significantly alter nutrient cycling in alpine and subalpine meadows compared to the current situation and increase the year-on-year variability in nutrient availability and leaching.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-19284S" target="_blank" >GA20-19284S: Biotické a abiotické faktory řídící ztráty fosforu z nevyvinutých alpinských půd</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS ONE
ISSN
1932-6203
e-ISSN
1932-6203
Svazek periodika
17
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
e0272143
Kód UT WoS článku
000837840000048
EID výsledku v databázi Scopus
2-s2.0-85135433180