Energy-efficient smart solar system cooling for real-time dynamic weather changes in mild-climate regions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F23%3A00573492" target="_blank" >RIV/60077344:_____/23:00573492 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60076658:12310/23:43906705
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1364032123002046/pdfft?md5=5b8ac989afb8a105c811ad1c04cdbb21&pid=1-s2.0-S1364032123002046-main.pdf" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1364032123002046/pdfft?md5=5b8ac989afb8a105c811ad1c04cdbb21&pid=1-s2.0-S1364032123002046-main.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.rser.2023.113347" target="_blank" >10.1016/j.rser.2023.113347</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Energy-efficient smart solar system cooling for real-time dynamic weather changes in mild-climate regions
Popis výsledku v původním jazyce
With changes in climatic conditions, the performance of photovoltaic power plant installations fluctuates, mainly due to excessive heat. The question of their efficient cooling comes to the fore, especially direct cooling, either by cooling media or air. Here, it is proven that the active cooling of photovoltaic panels leads to an increase in the performance, but the overall costs may exceed the benefits (especially for smaller/household installations). Moreover, in conventional approaches, increasing efficiency does not take into account sudden weather changes in the areas that have long been considered stable, such as the temperate climate zone. The proposed solution addresses the maximum number of parameters that can affect the cooling efficiency and introduces effortless rapid decision making system to ensure whether the conditions for active smart cooling are met or not. Parameters such as the amount of cooling medium (rainwater), its temperature, flow control, panel temperature, and the current prediction of local weather conditions based on the rapid changes in barometric pressure are monitored and then used for intelligent automation. By implementing efficient cooling system control that has to evaluate series of input parameters in real-time it was experimentally verified that the performance of photovoltaic panel installation using the spray cooling control system achieves average performance improvement of 14%.
Název v anglickém jazyce
Energy-efficient smart solar system cooling for real-time dynamic weather changes in mild-climate regions
Popis výsledku anglicky
With changes in climatic conditions, the performance of photovoltaic power plant installations fluctuates, mainly due to excessive heat. The question of their efficient cooling comes to the fore, especially direct cooling, either by cooling media or air. Here, it is proven that the active cooling of photovoltaic panels leads to an increase in the performance, but the overall costs may exceed the benefits (especially for smaller/household installations). Moreover, in conventional approaches, increasing efficiency does not take into account sudden weather changes in the areas that have long been considered stable, such as the temperate climate zone. The proposed solution addresses the maximum number of parameters that can affect the cooling efficiency and introduces effortless rapid decision making system to ensure whether the conditions for active smart cooling are met or not. Parameters such as the amount of cooling medium (rainwater), its temperature, flow control, panel temperature, and the current prediction of local weather conditions based on the rapid changes in barometric pressure are monitored and then used for intelligent automation. By implementing efficient cooling system control that has to evaluate series of input parameters in real-time it was experimentally verified that the performance of photovoltaic panel installation using the spray cooling control system achieves average performance improvement of 14%.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Renewable & Sustainable Energy Reviews
ISSN
1364-0321
e-ISSN
1879-0690
Svazek periodika
182
Číslo periodika v rámci svazku
AUG 01
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
113347
Kód UT WoS článku
001012545100001
EID výsledku v databázi Scopus
2-s2.0-85160540266