Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optically detected magnetic resonance and mutational analysis reveal significant differences in the photochemistry and structure of chlorophyll f synthase and photosystem II

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F23%3A00583746" target="_blank" >RIV/60077344:_____/23:00583746 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0005272823000488?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0005272823000488?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.bbabio.2023.149002" target="_blank" >10.1016/j.bbabio.2023.149002</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optically detected magnetic resonance and mutational analysis reveal significant differences in the photochemistry and structure of chlorophyll f synthase and photosystem II

  • Popis výsledku v původním jazyce

    In cyanobacteria that undergo far red light photoacclimation (FaRLiP), chlorophyll (Chl) f is produced by the ChlF synthase enzyme, probably by photo-oxidation of Chl a. The enzyme forms homodimeric complexes and the primary amino acid sequence of ChlF shows a high degree of homology with the D1 subunit of photosystem II (PSII). However, few details of the photochemistry of ChlF are known. The results of a mutational analysis and optically detected magnetic resonance (ODMR) data from ChlF are presented. Both sets of data show that there are significant differences in the photochemistry of ChlF and PSII. Mutation of residues that would disrupt the donor side primary electron transfer pathway in PSII do not inhibit the production of Chl f, while alteration of the putative ChlZ, P680 and QA binding sites rendered ChlF non-functional. Together with previously published transient EPR and flash photolysis data, the ODMR data show that in untreated ChlF samples, the triplet state of P680 formed by intersystem crossing is the primary species generated by light excitation. This is in contrast to PSII, in which 3P680 is only formed by charge recombination when the quinone acceptors are removed or chemically reduced. The triplet states of a carotenoid (3Car) and a small amount of 3Chl f are also observed by ODMR. The polarization pattern of 3Car is consistent with its formation by triplet energy transfer from ChlZ if the carotenoid molecule is rotated by 15 degrees about its long axis compared to the orientation in PSII. It is proposed that the singlet oxygen formed by the interaction between molecular oxygen and 3P680 might be involved in the oxidation of Chl a to Chl f.

  • Název v anglickém jazyce

    Optically detected magnetic resonance and mutational analysis reveal significant differences in the photochemistry and structure of chlorophyll f synthase and photosystem II

  • Popis výsledku anglicky

    In cyanobacteria that undergo far red light photoacclimation (FaRLiP), chlorophyll (Chl) f is produced by the ChlF synthase enzyme, probably by photo-oxidation of Chl a. The enzyme forms homodimeric complexes and the primary amino acid sequence of ChlF shows a high degree of homology with the D1 subunit of photosystem II (PSII). However, few details of the photochemistry of ChlF are known. The results of a mutational analysis and optically detected magnetic resonance (ODMR) data from ChlF are presented. Both sets of data show that there are significant differences in the photochemistry of ChlF and PSII. Mutation of residues that would disrupt the donor side primary electron transfer pathway in PSII do not inhibit the production of Chl f, while alteration of the putative ChlZ, P680 and QA binding sites rendered ChlF non-functional. Together with previously published transient EPR and flash photolysis data, the ODMR data show that in untreated ChlF samples, the triplet state of P680 formed by intersystem crossing is the primary species generated by light excitation. This is in contrast to PSII, in which 3P680 is only formed by charge recombination when the quinone acceptors are removed or chemically reduced. The triplet states of a carotenoid (3Car) and a small amount of 3Chl f are also observed by ODMR. The polarization pattern of 3Car is consistent with its formation by triplet energy transfer from ChlZ if the carotenoid molecule is rotated by 15 degrees about its long axis compared to the orientation in PSII. It is proposed that the singlet oxygen formed by the interaction between molecular oxygen and 3P680 might be involved in the oxidation of Chl a to Chl f.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10610 - Biophysics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF18_053%2F0016982" target="_blank" >EF18_053/0016982: Mezinárodní mobility výzkumných a administrativních pracovníků Biologického centra</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Biochimica Et Biophysica Acta-Bioenergetics

  • ISSN

    0005-2728

  • e-ISSN

    1879-2650

  • Svazek periodika

    1864

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    9

  • Strana od-do

    149002

  • Kód UT WoS článku

    001102522300001

  • EID výsledku v databázi Scopus

    2-s2.0-85167832912