Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Chlorophyll f synthesis by a super-rogue photosystem II complex

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F20%3A00524548" target="_blank" >RIV/61388971:_____/20:00524548 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.nature.com/articles/s41477-020-0616-4" target="_blank" >https://www.nature.com/articles/s41477-020-0616-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41477-020-0616-4" target="_blank" >10.1038/s41477-020-0616-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Chlorophyll f synthesis by a super-rogue photosystem II complex

  • Popis výsledku v původním jazyce

    Certain cyanobacteria synthesize chlorophyll molecules (Chl d and Chl f) that absorb in the far-red region of the solar spectrum, thereby extending the spectral range of photosynthetically active radiation(1,2). The synthesis and introduction of these far-red chlorophylls into the photosynthetic apparatus of plants might improve the efficiency of oxygenic photosynthesis, especially in far-red enriched environments, such as in the lower regions of the canopy(3). Production of Chl f requires the ChlF subunit, also known as PsbA4 (ref. (4)) or super-rogue D1 (ref. (5)), a paralogue of the D1 subunit of photosystem II (PSII) which, together with D2, bind cofactors involved in the light-driven oxidation of water. Current ideas suggest that ChlF oxidizes Chl a to Chl f in a homodimeric ChlF reaction centre (RC) complex and represents a missing link in the evolution of the heterodimeric D1/D2 RC of PSII (refs. (4,6)). However, unambiguous biochemical support for this proposal is lacking. Here, we show that ChlF can substitute for D1 to form modified PSII complexes capable of producing Chl f. Remarkably, mutation of just two residues in D1 converts oxygen-evolving PSII into a Chl f synthase. Overall, we have identified a new class of PSII complex, which we term 'super-rogue' PSII, with an unexpected role in pigment biosynthesis rather than water oxidation.nThe cyanobacterial chlorophyll, Chl f, absorbs far-red light. Mutation of two residues in a subunit of photosystem II converts it to a Chl f synthase. This 'super-rogue' photosystem might improve photosynthetic efficiency in low light.

  • Název v anglickém jazyce

    Chlorophyll f synthesis by a super-rogue photosystem II complex

  • Popis výsledku anglicky

    Certain cyanobacteria synthesize chlorophyll molecules (Chl d and Chl f) that absorb in the far-red region of the solar spectrum, thereby extending the spectral range of photosynthetically active radiation(1,2). The synthesis and introduction of these far-red chlorophylls into the photosynthetic apparatus of plants might improve the efficiency of oxygenic photosynthesis, especially in far-red enriched environments, such as in the lower regions of the canopy(3). Production of Chl f requires the ChlF subunit, also known as PsbA4 (ref. (4)) or super-rogue D1 (ref. (5)), a paralogue of the D1 subunit of photosystem II (PSII) which, together with D2, bind cofactors involved in the light-driven oxidation of water. Current ideas suggest that ChlF oxidizes Chl a to Chl f in a homodimeric ChlF reaction centre (RC) complex and represents a missing link in the evolution of the heterodimeric D1/D2 RC of PSII (refs. (4,6)). However, unambiguous biochemical support for this proposal is lacking. Here, we show that ChlF can substitute for D1 to form modified PSII complexes capable of producing Chl f. Remarkably, mutation of just two residues in D1 converts oxygen-evolving PSII into a Chl f synthase. Overall, we have identified a new class of PSII complex, which we term 'super-rogue' PSII, with an unexpected role in pigment biosynthesis rather than water oxidation.nThe cyanobacterial chlorophyll, Chl f, absorbs far-red light. Mutation of two residues in a subunit of photosystem II converts it to a Chl f synthase. This 'super-rogue' photosystem might improve photosynthetic efficiency in low light.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10606 - Microbiology

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nature Plants

  • ISSN

    2055-026X

  • e-ISSN

  • Svazek periodika

    6

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    7

  • Strana od-do

    238-244

  • Kód UT WoS článku

    000519577200015

  • EID výsledku v databázi Scopus

    2-s2.0-85081990201