Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A protocol for harvesting biodiversity data from Facebook

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F24%3A00605467" target="_blank" >RIV/60077344:_____/24:00605467 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1111/cobi.14257" target="_blank" >https://doi.org/10.1111/cobi.14257</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/cobi.14257" target="_blank" >10.1111/cobi.14257</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A protocol for harvesting biodiversity data from Facebook

  • Popis výsledku v původním jazyce

    The expanding use of community science platforms has led to an exponential increase in biodiversity data in global repositories. Yet, understanding of species distributions remains patchy. Biodiversity data from social media can potentially reduce the global biodiversity knowledge gap. However, practical guidelines and standardized methods for harvesting such data are nonexistent. Following data privacy and protection safeguards, we devised a standardized method for extracting species distribution records from Facebook groups that allow access to their data. It involves 3 steps: group selection, data extraction, and georeferencing the record location. We present how to structure keywords, search for species photographs, and georeference localities for such records. We further highlight some challenges users might face when extracting species distribution data from Facebook and suggest solutions. Following our proposed framework, we present a case study on Bangladesh's biodiversity-a tropical megadiverse South Asian country. We scraped nearly 45,000 unique georeferenced records across 967 species and found a median of 27 records per species. About 12% of the distribution data were for threatened species, representing 27% of all species. We also obtained data for 56 DataDeficient species for Bangladesh. If carefully harvested, social media data can significantly reduce global biodiversity knowledge gaps. Consequently, developing an automated tool to extract and interpret social media biodiversity data is a research priority.

  • Název v anglickém jazyce

    A protocol for harvesting biodiversity data from Facebook

  • Popis výsledku anglicky

    The expanding use of community science platforms has led to an exponential increase in biodiversity data in global repositories. Yet, understanding of species distributions remains patchy. Biodiversity data from social media can potentially reduce the global biodiversity knowledge gap. However, practical guidelines and standardized methods for harvesting such data are nonexistent. Following data privacy and protection safeguards, we devised a standardized method for extracting species distribution records from Facebook groups that allow access to their data. It involves 3 steps: group selection, data extraction, and georeferencing the record location. We present how to structure keywords, search for species photographs, and georeference localities for such records. We further highlight some challenges users might face when extracting species distribution data from Facebook and suggest solutions. Following our proposed framework, we present a case study on Bangladesh's biodiversity-a tropical megadiverse South Asian country. We scraped nearly 45,000 unique georeferenced records across 967 species and found a median of 27 records per species. About 12% of the distribution data were for threatened species, representing 27% of all species. We also obtained data for 56 DataDeficient species for Bangladesh. If carefully harvested, social media data can significantly reduce global biodiversity knowledge gaps. Consequently, developing an automated tool to extract and interpret social media biodiversity data is a research priority.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10619 - Biodiversity conservation

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Conservation Biology

  • ISSN

    0888-8892

  • e-ISSN

    1523-1739

  • Svazek periodika

    38

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    e14257

  • Kód UT WoS článku

    001192113500001

  • EID výsledku v databázi Scopus

    2-s2.0-85189536019