Higher-order nonlinear dynamical systems and invariant Lagrangians on a Lie group: The case of nonlocal Hunter-Saxton type peakons
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F24%3A00616591" target="_blank" >RIV/60077344:_____/24:00616591 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s12346-024-01018-8" target="_blank" >https://doi.org/10.1007/s12346-024-01018-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12346-024-01018-8" target="_blank" >10.1007/s12346-024-01018-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Higher-order nonlinear dynamical systems and invariant Lagrangians on a Lie group: The case of nonlocal Hunter-Saxton type peakons
Popis výsledku v původním jazyce
A G-strand is an evolutionary map g(t,s):RxR> G into a Lie group G that follows from the Hamilton's principle for a certain class of G-invariant Lagrangians defined on the Lie algebra of the group G. t and s are independent variables associated to a G-invariant Lagrangian. The G-strand equations comprises a system of integrable partial differential equations obtained from the Euler-Poincare variational equations coupled to an auxiliary zero curvature equation. Some of these integrable partial differential equations include the Hunter-Saxton equation that arises in the study of nematic liquid crystals and the Camassa-Holm equation that arises in modeling waves in shallow water including solitons and peakons. However, nonlocal integrable systems have attracted significant attention in recent years. In this study, we use a higher-order nonlocal operator approach to study nonlocal Hunter-Saxton type peakons. Peakons-antipeakons collision on Lie group is also analyzed and discussed. It was observed that the system of 'two-peakon' collisions exhibits a kind of disordered behavior which is observed in various integrable and non-integrable nonlinear evolution dynamical systems.
Název v anglickém jazyce
Higher-order nonlinear dynamical systems and invariant Lagrangians on a Lie group: The case of nonlocal Hunter-Saxton type peakons
Popis výsledku anglicky
A G-strand is an evolutionary map g(t,s):RxR> G into a Lie group G that follows from the Hamilton's principle for a certain class of G-invariant Lagrangians defined on the Lie algebra of the group G. t and s are independent variables associated to a G-invariant Lagrangian. The G-strand equations comprises a system of integrable partial differential equations obtained from the Euler-Poincare variational equations coupled to an auxiliary zero curvature equation. Some of these integrable partial differential equations include the Hunter-Saxton equation that arises in the study of nematic liquid crystals and the Camassa-Holm equation that arises in modeling waves in shallow water including solitons and peakons. However, nonlocal integrable systems have attracted significant attention in recent years. In this study, we use a higher-order nonlocal operator approach to study nonlocal Hunter-Saxton type peakons. Peakons-antipeakons collision on Lie group is also analyzed and discussed. It was observed that the system of 'two-peakon' collisions exhibits a kind of disordered behavior which is observed in various integrable and non-integrable nonlinear evolution dynamical systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Qualitative Theory of Dynamical Systems
ISSN
1575-5460
e-ISSN
1662-3592
Svazek periodika
23
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
24
Strana od-do
161
Kód UT WoS článku
001201824600004
EID výsledku v databázi Scopus
2-s2.0-85190240466