Hybrid Ant Colony Optimization Algorithm applied to the Multi-Depot Vehicle Routing Problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG42__%2F20%3A00555496" target="_blank" >RIV/60162694:G42__/20:00555496 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11047-020-09783-6" target="_blank" >https://link.springer.com/article/10.1007/s11047-020-09783-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11047-020-09783-6" target="_blank" >10.1007/s11047-020-09783-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hybrid Ant Colony Optimization Algorithm applied to the Multi-Depot Vehicle Routing Problem
Popis výsledku v původním jazyce
The article deals with the hybrid Ant Colony Optimization (ACO) algorithm and its application to the Multi-Depot Vehicle Routing Problem (MDVRP). The algorithm combines both probabilistic and exact techniques. The former implements the bio-inspired approach based on the behaviour of ants in the nature when searching for food together with simulated annealing principles. The latter complements the former. The algorithm explores the search space in a finite number of iterations. In each iteration, the deterministic local optimization process may be used to improve the current solution. Firstly, the key parts and features of the algorithm are presented, especially in connection with the exact optimization process. Next, the article deals with the results of experiments on MDVRP problems conducted to verify the quality of the algorithm; moreover, these results are compared to other state-of-the-art methods. As experiments, Cordreau’s benchmark instances were used. The experiments showed that the proposed algorithm overcomes the other methods as it has the smallest average error (the difference between the found solution and the best known solution) on the entire set of benchmark instances.
Název v anglickém jazyce
Hybrid Ant Colony Optimization Algorithm applied to the Multi-Depot Vehicle Routing Problem
Popis výsledku anglicky
The article deals with the hybrid Ant Colony Optimization (ACO) algorithm and its application to the Multi-Depot Vehicle Routing Problem (MDVRP). The algorithm combines both probabilistic and exact techniques. The former implements the bio-inspired approach based on the behaviour of ants in the nature when searching for food together with simulated annealing principles. The latter complements the former. The algorithm explores the search space in a finite number of iterations. In each iteration, the deterministic local optimization process may be used to improve the current solution. Firstly, the key parts and features of the algorithm are presented, especially in connection with the exact optimization process. Next, the article deals with the results of experiments on MDVRP problems conducted to verify the quality of the algorithm; moreover, these results are compared to other state-of-the-art methods. As experiments, Cordreau’s benchmark instances were used. The experiments showed that the proposed algorithm overcomes the other methods as it has the smallest average error (the difference between the found solution and the best known solution) on the entire set of benchmark instances.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Natural Computing
ISSN
1567-7818
e-ISSN
1572-9796
Svazek periodika
19
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
463-475
Kód UT WoS článku
000515594600001
EID výsledku v databázi Scopus
2-s2.0-85078462338