An adaptive method for bandwidth selection in circular kernel density estimation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG42__%2F24%3A00560521" target="_blank" >RIV/60162694:G42__/24:00560521 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/23:00134765
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00180-023-01401-0" target="_blank" >https://link.springer.com/article/10.1007/s00180-023-01401-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00180-023-01401-0" target="_blank" >10.1007/s00180-023-01401-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An adaptive method for bandwidth selection in circular kernel density estimation
Popis výsledku v původním jazyce
Kernel density estimations of circular data are an effective type of nonparametric estimation. The performance of these estimations depends significantly on a smoothing parameter referred to as bandwidth. Selecting suitable bandwidths for these types of estimation pose fundamental challenges, therefore fixed bandwidth selectors are often the initial choice. The study investigates common bandwidth selection methods and proposes novel methods which adopt the idea from the linear case. The attention is also paid to variable bandwidth selection. Using simulations which incorporate a range of circular distributions that exhibit multimodality, peakedness and skewness, the proposed methods were evaluated and then compared with other bandwidth selectors to determine their potential advantages. Two real datasets, one containing animal movements and the other wind direction data, were applied to illustrate the utility of the proposed methods.
Název v anglickém jazyce
An adaptive method for bandwidth selection in circular kernel density estimation
Popis výsledku anglicky
Kernel density estimations of circular data are an effective type of nonparametric estimation. The performance of these estimations depends significantly on a smoothing parameter referred to as bandwidth. Selecting suitable bandwidths for these types of estimation pose fundamental challenges, therefore fixed bandwidth selectors are often the initial choice. The study investigates common bandwidth selection methods and proposes novel methods which adopt the idea from the linear case. The attention is also paid to variable bandwidth selection. Using simulations which incorporate a range of circular distributions that exhibit multimodality, peakedness and skewness, the proposed methods were evaluated and then compared with other bandwidth selectors to determine their potential advantages. Two real datasets, one containing animal movements and the other wind direction data, were applied to illustrate the utility of the proposed methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Statistics
ISSN
0943-4062
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
20
Strana od-do
—
Kód UT WoS článku
001072240200001
EID výsledku v databázi Scopus
2-s2.0-85173054647