Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Ant Colony Optimization Based Algorithm for Test Path Generation Problem with Negative Constraints

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG42__%2F25%3A00563694" target="_blank" >RIV/60162694:G42__/25:00563694 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21230/24:00378799

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/xpl/conhome/9724650/proceeding" target="_blank" >https://ieeexplore.ieee.org/xpl/conhome/9724650/proceeding</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/QRS62785.2024.00075" target="_blank" >10.1109/QRS62785.2024.00075</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Ant Colony Optimization Based Algorithm for Test Path Generation Problem with Negative Constraints

  • Popis výsledku v původním jazyce

    Path-based testing is an established method for creating test cases comprising sequences of steps executed in a System Under Test (SUT). Several algorithms for generating the test sequences (paths) that satisfy various test coverage criteria determining their properties are published in the literature. However, existing path-based testing techniques have limited applicability in numerous practical cases, such as when executing a particular test step in the test further excludes the execution of another test step. More complex exclusion requirements (further denoted negative constraints) exist in real systems, depending on the number of executions of a particular test step. In the paper, we discuss two possible negative constraints, namely, (1) the complete exclusion of a step as a consequence of the execution of a particular previous step and (2) the requirement to include a particular step maximally once in one test path, when another step was executed previously. We present a novel ant-colony-optimization (ACO) principle-based algorithm, accepting a SUT model based and a set of negative constraints, and computing a set of test paths while maximizing edge coverage and satisfying the given set of negative constraints. We compare the results of the ACO-based algorithm with those returned by a baseline, an alternative algorithm that excludes specific test paths from a set of test paths satisfying edge coverage, and, for reference, with results returned by an algorithm that generates test paths that satisfy edge coverage. Evaluated on 152 problem instances, the presented ACO-based algorithm outperformed the baseline in the average length of test paths (representing the testing costs) lower by 32.62%. Also, the ratio of edge coverage satisfaction in the set of test paths computed by the ACO-based algorithm is better by 3.41% compared to the baseline.

  • Název v anglickém jazyce

    Ant Colony Optimization Based Algorithm for Test Path Generation Problem with Negative Constraints

  • Popis výsledku anglicky

    Path-based testing is an established method for creating test cases comprising sequences of steps executed in a System Under Test (SUT). Several algorithms for generating the test sequences (paths) that satisfy various test coverage criteria determining their properties are published in the literature. However, existing path-based testing techniques have limited applicability in numerous practical cases, such as when executing a particular test step in the test further excludes the execution of another test step. More complex exclusion requirements (further denoted negative constraints) exist in real systems, depending on the number of executions of a particular test step. In the paper, we discuss two possible negative constraints, namely, (1) the complete exclusion of a step as a consequence of the execution of a particular previous step and (2) the requirement to include a particular step maximally once in one test path, when another step was executed previously. We present a novel ant-colony-optimization (ACO) principle-based algorithm, accepting a SUT model based and a set of negative constraints, and computing a set of test paths while maximizing edge coverage and satisfying the given set of negative constraints. We compare the results of the ACO-based algorithm with those returned by a baseline, an alternative algorithm that excludes specific test paths from a set of test paths satisfying edge coverage, and, for reference, with results returned by an algorithm that generates test paths that satisfy edge coverage. Evaluated on 152 problem instances, the presented ACO-based algorithm outperformed the baseline in the average length of test paths (representing the testing costs) lower by 32.62%. Also, the ratio of edge coverage satisfaction in the set of test paths computed by the ACO-based algorithm is better by 3.41% compared to the baseline.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    50900 - Other social sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    IEEE International Conference on Software Quality Reliability and Security

  • ISBN

    979-8-3503-6563-4

  • ISSN

    2693-9185

  • e-ISSN

    2693-9177

  • Počet stran výsledku

    12

  • Strana od-do

    701-712

  • Název nakladatele

    IEEE COMPUTER SOC

  • Místo vydání

  • Místo konání akce

    Cambridge, ENGLAND

  • Datum konání akce

    1. 7. 2024

  • Typ akce podle státní příslušnosti

    CST - Celostátní akce

  • Kód UT WoS článku

    001327094200065