Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Investigation of Problems Leading to Global Extrema

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F13%3A00497670" target="_blank" >RIV/60162694:G43__/13:00497670 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://vavtest.unob.cz/registr" target="_blank" >http://vavtest.unob.cz/registr</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Investigation of Problems Leading to Global Extrema

  • Popis výsledku v původním jazyce

    In many situations, the best solutions of some problems are to be found. The problems are usually replaced by their mathematical models and become mathematical problems. The branch of mathematics studying this topic is theory of optimization. In this contribution we concentrate on the investigation of problems modelled by real functions of several variables. In this case, finding the best solution means to determine global extrema of an objective function. The situation simplifies substantially if it is known that global extrema exist. Then it is sufficient to find critical points, i.e. points in which local extrema can occur, to decide whether they are points of local extrema and choose those giving the greatest or smallest value. The standard result guaranteeing the existence of global extrema is the well-known Weierstrass Theorem: Any function continuous on a compact domain assumes its greatest and smallest value. The situation complicates when the existence of global extrema is not guaranteed. There are no universal methods how to proceed in such cases. In the paper, a few possible approaches are presented and their use on examples is demonstrated. They include namely solutions based on monotonicity and some important inequalities. Likewise their efficiency and the comparison with standard tools of differential calculus for functions of several variables for finding local extrema (first and second order conditions) are discussed.

  • Název v anglickém jazyce

    Investigation of Problems Leading to Global Extrema

  • Popis výsledku anglicky

    In many situations, the best solutions of some problems are to be found. The problems are usually replaced by their mathematical models and become mathematical problems. The branch of mathematics studying this topic is theory of optimization. In this contribution we concentrate on the investigation of problems modelled by real functions of several variables. In this case, finding the best solution means to determine global extrema of an objective function. The situation simplifies substantially if it is known that global extrema exist. Then it is sufficient to find critical points, i.e. points in which local extrema can occur, to decide whether they are points of local extrema and choose those giving the greatest or smallest value. The standard result guaranteeing the existence of global extrema is the well-known Weierstrass Theorem: Any function continuous on a compact domain assumes its greatest and smallest value. The situation complicates when the existence of global extrema is not guaranteed. There are no universal methods how to proceed in such cases. In the paper, a few possible approaches are presented and their use on examples is demonstrated. They include namely solutions based on monotonicity and some important inequalities. Likewise their efficiency and the comparison with standard tools of differential calculus for functions of several variables for finding local extrema (first and second order conditions) are discussed.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ICERI2013 Proceedings

  • ISBN

    978-84-616-3847-5

  • ISSN

    2340-1095

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    4745-4750

  • Název nakladatele

    IATED Digital Library

  • Místo vydání

    Sevilla, Spain

  • Místo konání akce

    Sevilla, Spain

  • Datum konání akce

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000347240604120