A method to evaluate an aircraft operational risk
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F18%3A00535228" target="_blank" >RIV/60162694:G43__/18:00535228 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.taylorfrancis.com/search?key=9780815386827" target="_blank" >https://www.taylorfrancis.com/search?key=9780815386827</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A method to evaluate an aircraft operational risk
Popis výsledku v původním jazyce
Improving performing and safety of the aircraft operation is one of the most important issues addressed by experts. Such improvement can result not only in the less frequent loss of equipment but primarily in the protection of health or saving lives of both crew members and others involved. Reducing such risks or minimizing impacts is possible by analyzing events, which had already occurred. In this paper, our main motivation consists in developing an effective and intelligent decision support system based on data mining techniques. In this context, data mining classifying algorithms with large datasets have been utilized to assess and analyse the risk factors statistically related to aircraft incidents in order to compare the performance of the implemented classifiers such as decision tree, discriminant and random forest. To nderscore the practical cost, i.e., effectiveness of our approach, the selected classifiers have been implemented using statistical programming tools with datasets taken from the operation process. This analysis is expected to find the algorithm, which can support the decision taking.
Název v anglickém jazyce
A method to evaluate an aircraft operational risk
Popis výsledku anglicky
Improving performing and safety of the aircraft operation is one of the most important issues addressed by experts. Such improvement can result not only in the less frequent loss of equipment but primarily in the protection of health or saving lives of both crew members and others involved. Reducing such risks or minimizing impacts is possible by analyzing events, which had already occurred. In this paper, our main motivation consists in developing an effective and intelligent decision support system based on data mining techniques. In this context, data mining classifying algorithms with large datasets have been utilized to assess and analyse the risk factors statistically related to aircraft incidents in order to compare the performance of the implemented classifiers such as decision tree, discriminant and random forest. To nderscore the practical cost, i.e., effectiveness of our approach, the selected classifiers have been implemented using statistical programming tools with datasets taken from the operation process. This analysis is expected to find the algorithm, which can support the decision taking.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50902 - Social sciences, interdisciplinary
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Safety and Reliability - Safe Societies in a Changing World Proceedings of ESREL 2018, S. Haugen, A. Barros, C. van Gulijk, T. Kongsvik, J. E. Vinnem (editors)
ISBN
9781351174657
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1441-1446
Název nakladatele
CRC Press
Místo vydání
London
Místo konání akce
Tronheim, Norway
Datum konání akce
17. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—