Influence of the calculation method on understanding the motion of the rigid body
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F18%3A00536526" target="_blank" >RIV/60162694:G43__/18:00536526 - isvavai.cz</a>
Výsledek na webu
<a href="https://library.iated.org/view/MACKO2018INF" target="_blank" >https://library.iated.org/view/MACKO2018INF</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21125/iceri.2018.2568" target="_blank" >10.21125/iceri.2018.2568</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Influence of the calculation method on understanding the motion of the rigid body
Popis výsledku v původním jazyce
In the paper are shown the calculations of motion of the rigid body using high school mathematics and then the calculation of motion by means of a second order differential equation. The numerical method called the Runge-Kutta method was used to determine the results, i.e. the position of the rigid body in the coordinate system, as well as the velocity and acceleration of the rigid body. Different results of the calculation show the students errors that arose due to the calculation method used. The use of the differential equation is more difficult, but on the other hand it is taught to analytically think, because the use of numerical methods for calculating the second order differential equation means thorough preparation of the calculation procedure. Using a detailed calculation of rigid body motion, students learn to understand the complex motion as well as learn to apply mathematical methods to model rigid body motion. In the end, the two approaches that are used in teaching are compared.
Název v anglickém jazyce
Influence of the calculation method on understanding the motion of the rigid body
Popis výsledku anglicky
In the paper are shown the calculations of motion of the rigid body using high school mathematics and then the calculation of motion by means of a second order differential equation. The numerical method called the Runge-Kutta method was used to determine the results, i.e. the position of the rigid body in the coordinate system, as well as the velocity and acceleration of the rigid body. Different results of the calculation show the students errors that arose due to the calculation method used. The use of the differential equation is more difficult, but on the other hand it is taught to analytically think, because the use of numerical methods for calculating the second order differential equation means thorough preparation of the calculation procedure. Using a detailed calculation of rigid body motion, students learn to understand the complex motion as well as learn to apply mathematical methods to model rigid body motion. In the end, the two approaches that are used in teaching are compared.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICERI2018 Proceedings
ISBN
978-84-09-05948-5
ISSN
2340-1095
e-ISSN
—
Počet stran výsledku
5
Strana od-do
6671-6675
Název nakladatele
International Academy of Technology, Education and Development
Místo vydání
VALENICA, BURJASSOT
Místo konání akce
Seville, Spain
Datum konání akce
12. 11. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000568991701148