Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

VARIOUS METHODS OF INTERPRETATION AND CALCULATION OF THE RIGID BODY MOTION

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F16%3A00532458" target="_blank" >RIV/60162694:G43__/16:00532458 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://library.iated.org/view/MACKO2016VAR" target="_blank" >http://library.iated.org/view/MACKO2016VAR</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21125/inted.2016.2127" target="_blank" >10.21125/inted.2016.2127</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    VARIOUS METHODS OF INTERPRETATION AND CALCULATION OF THE RIGID BODY MOTION

  • Popis výsledku v původním jazyce

    The article is suitable for teachers who are trying to find an applicable way of explaining the rigid body motion accompanied by calculations. Newton's second law can be expressed by the famous equation F = m.a, which means that the force F on mass m grants the body an acceleration a. This equation can be also formulated as the second order differential equation. The solution to this differential equation is a function x(t), where t is time and x is distance. The value of the x(t) function allows to specify the position of the body at any given time. The teacher usually selects one of two ways of interpreting the body motion and calculating the above mentioned differential equation. In the first case, the teacher explains Newton's second law and calculates the model examples. Students themselves should therefore understand the problem and be able to calculate other exercises. In the second case, the teacher invites students to ask questions, which in turn leads to better understanding of the rigid body motion under the action of an external force. At the same time, the teacher calculates the Newton equation. Thus, students will understand the principle of motion and its calculation in the course of the lecture. The calculation is performed using spreadsheet Microsoft Excel, the mathematical tool Matlab and the Pascal programming language. The calculation results are the same, of course. The question is which method of interpretation is the most comprehensible to students. It seems that the most suitable one is the calculation of the rigid body motion using spreadsheet in the form of an table and a corresponding chart.

  • Název v anglickém jazyce

    VARIOUS METHODS OF INTERPRETATION AND CALCULATION OF THE RIGID BODY MOTION

  • Popis výsledku anglicky

    The article is suitable for teachers who are trying to find an applicable way of explaining the rigid body motion accompanied by calculations. Newton's second law can be expressed by the famous equation F = m.a, which means that the force F on mass m grants the body an acceleration a. This equation can be also formulated as the second order differential equation. The solution to this differential equation is a function x(t), where t is time and x is distance. The value of the x(t) function allows to specify the position of the body at any given time. The teacher usually selects one of two ways of interpreting the body motion and calculating the above mentioned differential equation. In the first case, the teacher explains Newton's second law and calculates the model examples. Students themselves should therefore understand the problem and be able to calculate other exercises. In the second case, the teacher invites students to ask questions, which in turn leads to better understanding of the rigid body motion under the action of an external force. At the same time, the teacher calculates the Newton equation. Thus, students will understand the principle of motion and its calculation in the course of the lecture. The calculation is performed using spreadsheet Microsoft Excel, the mathematical tool Matlab and the Pascal programming language. The calculation results are the same, of course. The question is which method of interpretation is the most comprehensible to students. It seems that the most suitable one is the calculation of the rigid body motion using spreadsheet in the form of an table and a corresponding chart.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BM - Fyzika pevných látek a magnetismus

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    INTED2016 Proceedings

  • ISBN

    978-84-608-5617-7

  • ISSN

    2340-1079

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    4518-4524

  • Název nakladatele

    IATED

  • Místo vydání

    Valencia, Spain

  • Místo konání akce

    Valencia

  • Datum konání akce

    7. 3. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku