VARIOUS METHODS OF INTERPRETATION AND CALCULATION OF THE RIGID BODY MOTION
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F16%3A00532458" target="_blank" >RIV/60162694:G43__/16:00532458 - isvavai.cz</a>
Výsledek na webu
<a href="http://library.iated.org/view/MACKO2016VAR" target="_blank" >http://library.iated.org/view/MACKO2016VAR</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21125/inted.2016.2127" target="_blank" >10.21125/inted.2016.2127</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
VARIOUS METHODS OF INTERPRETATION AND CALCULATION OF THE RIGID BODY MOTION
Popis výsledku v původním jazyce
The article is suitable for teachers who are trying to find an applicable way of explaining the rigid body motion accompanied by calculations. Newton's second law can be expressed by the famous equation F = m.a, which means that the force F on mass m grants the body an acceleration a. This equation can be also formulated as the second order differential equation. The solution to this differential equation is a function x(t), where t is time and x is distance. The value of the x(t) function allows to specify the position of the body at any given time. The teacher usually selects one of two ways of interpreting the body motion and calculating the above mentioned differential equation. In the first case, the teacher explains Newton's second law and calculates the model examples. Students themselves should therefore understand the problem and be able to calculate other exercises. In the second case, the teacher invites students to ask questions, which in turn leads to better understanding of the rigid body motion under the action of an external force. At the same time, the teacher calculates the Newton equation. Thus, students will understand the principle of motion and its calculation in the course of the lecture. The calculation is performed using spreadsheet Microsoft Excel, the mathematical tool Matlab and the Pascal programming language. The calculation results are the same, of course. The question is which method of interpretation is the most comprehensible to students. It seems that the most suitable one is the calculation of the rigid body motion using spreadsheet in the form of an table and a corresponding chart.
Název v anglickém jazyce
VARIOUS METHODS OF INTERPRETATION AND CALCULATION OF THE RIGID BODY MOTION
Popis výsledku anglicky
The article is suitable for teachers who are trying to find an applicable way of explaining the rigid body motion accompanied by calculations. Newton's second law can be expressed by the famous equation F = m.a, which means that the force F on mass m grants the body an acceleration a. This equation can be also formulated as the second order differential equation. The solution to this differential equation is a function x(t), where t is time and x is distance. The value of the x(t) function allows to specify the position of the body at any given time. The teacher usually selects one of two ways of interpreting the body motion and calculating the above mentioned differential equation. In the first case, the teacher explains Newton's second law and calculates the model examples. Students themselves should therefore understand the problem and be able to calculate other exercises. In the second case, the teacher invites students to ask questions, which in turn leads to better understanding of the rigid body motion under the action of an external force. At the same time, the teacher calculates the Newton equation. Thus, students will understand the principle of motion and its calculation in the course of the lecture. The calculation is performed using spreadsheet Microsoft Excel, the mathematical tool Matlab and the Pascal programming language. The calculation results are the same, of course. The question is which method of interpretation is the most comprehensible to students. It seems that the most suitable one is the calculation of the rigid body motion using spreadsheet in the form of an table and a corresponding chart.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BM - Fyzika pevných látek a magnetismus
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
INTED2016 Proceedings
ISBN
978-84-608-5617-7
ISSN
2340-1079
e-ISSN
—
Počet stran výsledku
7
Strana od-do
4518-4524
Název nakladatele
IATED
Místo vydání
Valencia, Spain
Místo konání akce
Valencia
Datum konání akce
7. 3. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—