Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Superring of Polynomials over a Hyperring

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F19%3A00537269" target="_blank" >RIV/60162694:G43__/19:00537269 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2227-7390/7/10/902/pdf" target="_blank" >https://www.mdpi.com/2227-7390/7/10/902/pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math7100902" target="_blank" >10.3390/math7100902</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Superring of Polynomials over a Hyperring

  • Popis výsledku v původním jazyce

    A Krasner hyperring (for short, a hyperring) is a generalization of a ring such that the addition is multivalued and the multiplication is as usual single valued and satisfies the usual ring properties. One of the important subjects in the theory of hyperrings is the study of polynomials over a hyperring. Recently, polynomials over hyperrings have been studied by Davvaz and Musavi, and they proved that polynomials over a hyperring constitute an additive-multiplicative hyperring that is a hyperstructure in which both addition and multiplication are multivalued and multiplication is distributive with respect to the addition. In this paper, we first show that the polynomials over a hyperring is not an additive-multiplicative hyperring, since the multiplication is not distributive with respect to addition; then, we study hyperideals of polynomials, such as prime and maximal hyperideals and prove that every principal hyperideal generated by an irreducible polynomial is maximal and Hilbert’s basis theorem holds for polynomials over a hyperring.

  • Název v anglickém jazyce

    Superring of Polynomials over a Hyperring

  • Popis výsledku anglicky

    A Krasner hyperring (for short, a hyperring) is a generalization of a ring such that the addition is multivalued and the multiplication is as usual single valued and satisfies the usual ring properties. One of the important subjects in the theory of hyperrings is the study of polynomials over a hyperring. Recently, polynomials over hyperrings have been studied by Davvaz and Musavi, and they proved that polynomials over a hyperring constitute an additive-multiplicative hyperring that is a hyperstructure in which both addition and multiplication are multivalued and multiplication is distributive with respect to the addition. In this paper, we first show that the polynomials over a hyperring is not an additive-multiplicative hyperring, since the multiplication is not distributive with respect to addition; then, we study hyperideals of polynomials, such as prime and maximal hyperideals and prove that every principal hyperideal generated by an irreducible polynomial is maximal and Hilbert’s basis theorem holds for polynomials over a hyperring.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

    2227-7390

  • Svazek periodika

    7

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    15

  • Strana od-do

    902

  • Kód UT WoS článku

    000498404700031

  • EID výsledku v databázi Scopus

    2-s2.0-85073770063