(V)TEAM for SPICE Simulation of Memristive Devices With Improved Numerical Performance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F21%3A00556769" target="_blank" >RIV/60162694:G43__/21:00556769 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26220/21:PU139994
Výsledek na webu
<a href="https://dx.doi.org/10.1109/ACCESS.2021.3059241" target="_blank" >https://dx.doi.org/10.1109/ACCESS.2021.3059241</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2021.3059241" target="_blank" >10.1109/ACCESS.2021.3059241</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
(V)TEAM for SPICE Simulation of Memristive Devices With Improved Numerical Performance
Popis výsledku v původním jazyce
The paper introduces a set of models of memristive devices for a reliable, accurate and fast analysis of large networks in the SPICE (Simulation Program with Integrated Circuit Emphasis) environment. The modeling starts from the recently introduced TEAM (ThrEshold Adaptive Memristor Model) and VTEAM (Voltage ThrEshold Adaptive Memristor Model). A number of improvements are made towards the stick effect elimination and other numerical renements to make the analysis of large networks fast and accurate. A set of models are proposed that utilize the synergy of several techniques such as window asymmetrization, integration with saturation, state equation preprocessing, scaling, and smoothing. The performance of models is tested in Cadence PSPICE 17.2 and particularly in HSPICE v2017, the latter on a large-scale CNN (Cellular Nonlinear Network) for detecting edges of binary images. The simulations manifest the usability of developed models for fast and reliable operation in networks containing more than one million nodes.
Název v anglickém jazyce
(V)TEAM for SPICE Simulation of Memristive Devices With Improved Numerical Performance
Popis výsledku anglicky
The paper introduces a set of models of memristive devices for a reliable, accurate and fast analysis of large networks in the SPICE (Simulation Program with Integrated Circuit Emphasis) environment. The modeling starts from the recently introduced TEAM (ThrEshold Adaptive Memristor Model) and VTEAM (Voltage ThrEshold Adaptive Memristor Model). A number of improvements are made towards the stick effect elimination and other numerical renements to make the analysis of large networks fast and accurate. A set of models are proposed that utilize the synergy of several techniques such as window asymmetrization, integration with saturation, state equation preprocessing, scaling, and smoothing. The performance of models is tested in Cadence PSPICE 17.2 and particularly in HSPICE v2017, the latter on a large-scale CNN (Cellular Nonlinear Network) for detecting edges of binary images. The simulations manifest the usability of developed models for fast and reliable operation in networks containing more than one million nodes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
2021
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
30242-30255
Kód UT WoS článku
000622080900001
EID výsledku v databázi Scopus
—