Model of the Combustion Process in the Spark Ignition Engine Fueled with CNG
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F23%3A00557657" target="_blank" >RIV/60162694:G43__/23:00557657 - isvavai.cz</a>
Výsledek na webu
<a href="http://scitation.aip.org/content/aip/proceeding/aipcp" target="_blank" >http://scitation.aip.org/content/aip/proceeding/aipcp</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0103746" target="_blank" >10.1063/5.0103746</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Model of the Combustion Process in the Spark Ignition Engine Fueled with CNG
Popis výsledku v původním jazyce
The goal of this study is to create a thermochemical mathematical model that describes the cycle of a CNG-fueled spark ignition engine. The description of the combustion process is a critical topic in mathematical modeling of internal combustion engine cycles. Non-equilibrium chemical kinetics can be used to properly characterize the combustion of simple hydrocarbons. The reaction system shown consists of 54 chemical reactions spread across 18 components (O2, H2, OH, H, H2O, HO2, CO2, CO, O, CH4, CH3, CH2O, CHO, N2, N, NO, N2O, NO2). The thermochemical model of combustion allows us to determine the composition of the in-cylinder burning gases throughout the cycle. As a result, we can determine the composition of exhaust gases. The overall issue entails solving a set of twenty differential equations for each of two combustion zones. There are solved concentration and temperature evolutions for all gas components. Numerous algebraic equations and boundary conditions round out the model. The Runge-Kutta method was used to solve the problem numerically in the MATLAB environment. By comparing simulation findings to experimental observations, the simulation results were confirmed.
Název v anglickém jazyce
Model of the Combustion Process in the Spark Ignition Engine Fueled with CNG
Popis výsledku anglicky
The goal of this study is to create a thermochemical mathematical model that describes the cycle of a CNG-fueled spark ignition engine. The description of the combustion process is a critical topic in mathematical modeling of internal combustion engine cycles. Non-equilibrium chemical kinetics can be used to properly characterize the combustion of simple hydrocarbons. The reaction system shown consists of 54 chemical reactions spread across 18 components (O2, H2, OH, H, H2O, HO2, CO2, CO, O, CH4, CH3, CH2O, CHO, N2, N, NO, N2O, NO2). The thermochemical model of combustion allows us to determine the composition of the in-cylinder burning gases throughout the cycle. As a result, we can determine the composition of exhaust gases. The overall issue entails solving a set of twenty differential equations for each of two combustion zones. There are solved concentration and temperature evolutions for all gas components. Numerous algebraic equations and boundary conditions round out the model. The Runge-Kutta method was used to solve the problem numerically in the MATLAB environment. By comparing simulation findings to experimental observations, the simulation results were confirmed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20300 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIP Conference Proceedings
ISBN
978-0-7354-4386-0
ISSN
0094-243X
e-ISSN
1551-7616
Počet stran výsledku
10
Strana od-do
0600031-06000310
Název nakladatele
American Institute of Physics Inc.
Místo vydání
—
Místo konání akce
Sozopol, Republic of Bulgaria
Datum konání akce
10. 9. 2021
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—