Micro-Doppler Effect and Determination of Rotor Blades by Deep Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F23%3A00558038" target="_blank" >RIV/60162694:G43__/23:00558038 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26220/22:PU144529
Výsledek na webu
<a href="http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9764897" target="_blank" >http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9764897</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/RADIOELEKTRONIKA54537.2022.9764934" target="_blank" >10.1109/RADIOELEKTRONIKA54537.2022.9764934</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Micro-Doppler Effect and Determination of Rotor Blades by Deep Neural Networks
Popis výsledku v původním jazyce
The paper deals with the analysis of simulated data, where thousands of samples of reflections from a radar target, a helicopter, with propellers were simulated. Simulations were performed for helicopters with 3, 4, 6, and 8 propeller blades. Data collection and evaluation were focused on the measurement of the Doppler Effect, specifically the Micro-Doppler effect for the rotating propeller section. The simulations have been divided into several sections for all types of helicopters differing in the number of propellers. The most considered was the change of Radar Cross Section (RCS), but changes in helicopter movement speed, changes in helicopter position relative to the radar, and changes in helicopter rotation speed have been considered as well. Moreover, a simulation of the change in radar carrier frequency across the microwave band was performed and the changes and effects on the Micro-Doppler measurement data were studied. However, the main task of this paper was to determine the number of propeller blades from any simulated signal sample with parameters corresponding to the Micro-Doppler, which was successfully done. Simulated data has been used to train a deep learning network to classify the number of propeller blades on a randomly selected measured/simulated sample. To detect the number of rotors, we have chosen to use Convolutional Neural Networks (CNN), which achieve good results for object recognition from images.
Název v anglickém jazyce
Micro-Doppler Effect and Determination of Rotor Blades by Deep Neural Networks
Popis výsledku anglicky
The paper deals with the analysis of simulated data, where thousands of samples of reflections from a radar target, a helicopter, with propellers were simulated. Simulations were performed for helicopters with 3, 4, 6, and 8 propeller blades. Data collection and evaluation were focused on the measurement of the Doppler Effect, specifically the Micro-Doppler effect for the rotating propeller section. The simulations have been divided into several sections for all types of helicopters differing in the number of propellers. The most considered was the change of Radar Cross Section (RCS), but changes in helicopter movement speed, changes in helicopter position relative to the radar, and changes in helicopter rotation speed have been considered as well. Moreover, a simulation of the change in radar carrier frequency across the microwave band was performed and the changes and effects on the Micro-Doppler measurement data were studied. However, the main task of this paper was to determine the number of propeller blades from any simulated signal sample with parameters corresponding to the Micro-Doppler, which was successfully done. Simulated data has been used to train a deep learning network to classify the number of propeller blades on a randomly selected measured/simulated sample. To detect the number of rotors, we have chosen to use Convolutional Neural Networks (CNN), which achieve good results for object recognition from images.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TM02000035" target="_blank" >TM02000035: Pokroková klasifikace signálů (NEOCLASSIG) pro radio-průzkumné systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 32nd International Conference Radioelektronika, RADIOELEKTRONIKA 2022 - Proceedings
ISBN
978-1-7281-8686-3
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
Košice - Radioelektronika 2022
Místo konání akce
Kosice, Slovak Republic
Datum konání akce
21. 4. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—