Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Micro-Doppler Effect and Determination of Rotor Blades by Deep Neural Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F23%3A00558038" target="_blank" >RIV/60162694:G43__/23:00558038 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216305:26220/22:PU144529

  • Výsledek na webu

    <a href="http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9764897" target="_blank" >http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9764897</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/RADIOELEKTRONIKA54537.2022.9764934" target="_blank" >10.1109/RADIOELEKTRONIKA54537.2022.9764934</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Micro-Doppler Effect and Determination of Rotor Blades by Deep Neural Networks

  • Popis výsledku v původním jazyce

    The paper deals with the analysis of simulated data, where thousands of samples of reflections from a radar target, a helicopter, with propellers were simulated. Simulations were performed for helicopters with 3, 4, 6, and 8 propeller blades. Data collection and evaluation were focused on the measurement of the Doppler Effect, specifically the Micro-Doppler effect for the rotating propeller section. The simulations have been divided into several sections for all types of helicopters differing in the number of propellers. The most considered was the change of Radar Cross Section (RCS), but changes in helicopter movement speed, changes in helicopter position relative to the radar, and changes in helicopter rotation speed have been considered as well. Moreover, a simulation of the change in radar carrier frequency across the microwave band was performed and the changes and effects on the Micro-Doppler measurement data were studied. However, the main task of this paper was to determine the number of propeller blades from any simulated signal sample with parameters corresponding to the Micro-Doppler, which was successfully done. Simulated data has been used to train a deep learning network to classify the number of propeller blades on a randomly selected measured/simulated sample. To detect the number of rotors, we have chosen to use Convolutional Neural Networks (CNN), which achieve good results for object recognition from images.

  • Název v anglickém jazyce

    Micro-Doppler Effect and Determination of Rotor Blades by Deep Neural Networks

  • Popis výsledku anglicky

    The paper deals with the analysis of simulated data, where thousands of samples of reflections from a radar target, a helicopter, with propellers were simulated. Simulations were performed for helicopters with 3, 4, 6, and 8 propeller blades. Data collection and evaluation were focused on the measurement of the Doppler Effect, specifically the Micro-Doppler effect for the rotating propeller section. The simulations have been divided into several sections for all types of helicopters differing in the number of propellers. The most considered was the change of Radar Cross Section (RCS), but changes in helicopter movement speed, changes in helicopter position relative to the radar, and changes in helicopter rotation speed have been considered as well. Moreover, a simulation of the change in radar carrier frequency across the microwave band was performed and the changes and effects on the Micro-Doppler measurement data were studied. However, the main task of this paper was to determine the number of propeller blades from any simulated signal sample with parameters corresponding to the Micro-Doppler, which was successfully done. Simulated data has been used to train a deep learning network to classify the number of propeller blades on a randomly selected measured/simulated sample. To detect the number of rotors, we have chosen to use Convolutional Neural Networks (CNN), which achieve good results for object recognition from images.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TM02000035" target="_blank" >TM02000035: Pokroková klasifikace signálů (NEOCLASSIG) pro radio-průzkumné systémy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2022 32nd International Conference Radioelektronika, RADIOELEKTRONIKA 2022 - Proceedings

  • ISBN

    978-1-7281-8686-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    1-6

  • Název nakladatele

    Institute of Electrical and Electronics Engineers Inc.

  • Místo vydání

    Košice - Radioelektronika 2022

  • Místo konání akce

    Kosice, Slovak Republic

  • Datum konání akce

    21. 4. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku