Implementation of a Multipath Fully Differential OTA in 0.18-μm CMOS Process
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F24%3A00558782" target="_blank" >RIV/60162694:G43__/24:00558782 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9944072" target="_blank" >https://ieeexplore.ieee.org/document/9944072</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TVLSI.2022.3218741" target="_blank" >10.1109/TVLSI.2022.3218741</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Implementation of a Multipath Fully Differential OTA in 0.18-μm CMOS Process
Popis výsledku v původním jazyce
This brief implements a highly efficient fully differential transconductance amplifier, based on several input-to-output paths. Some traditional techniques, such as positive feedback, nonlinear tail current sources, and current mirror-based paths, are combined to increase the transconductance, thus leading to larger dc gain and higher gain bandwidth (GBW) product. Two flipped voltage-follower (FVF) cells are employed as variable current sources to provide class-AB operation and adaptive biasing of all other drivers. The proposed structure includes several input-to-output paths that play the role of dynamic current boosters during the slewing phase, thus improving the slew rate (SR) performance. The circuit was fabricated in a TSMC 0.18-mu m CMOS process with a silicon area of 54.5 x 30.1 mu m. Experimental results show a GBW of 173.3 MHz, a dc gain of 72.7 dB, and an SR of 139.4 V/mu s for a capacitive load of 2 x 5 pF. The proposed circuit consumes 619 mu W of power, under a supply voltage of 1.8 V.
Název v anglickém jazyce
Implementation of a Multipath Fully Differential OTA in 0.18-μm CMOS Process
Popis výsledku anglicky
This brief implements a highly efficient fully differential transconductance amplifier, based on several input-to-output paths. Some traditional techniques, such as positive feedback, nonlinear tail current sources, and current mirror-based paths, are combined to increase the transconductance, thus leading to larger dc gain and higher gain bandwidth (GBW) product. Two flipped voltage-follower (FVF) cells are employed as variable current sources to provide class-AB operation and adaptive biasing of all other drivers. The proposed structure includes several input-to-output paths that play the role of dynamic current boosters during the slewing phase, thus improving the slew rate (SR) performance. The circuit was fabricated in a TSMC 0.18-mu m CMOS process with a silicon area of 54.5 x 30.1 mu m. Experimental results show a GBW of 173.3 MHz, a dc gain of 72.7 dB, and an SR of 139.4 V/mu s for a capacitive load of 2 x 5 pF. The proposed circuit consumes 619 mu W of power, under a supply voltage of 1.8 V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS
ISSN
1063-8210
e-ISSN
1557-9999
Svazek periodika
31
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
5
Strana od-do
147-151
Kód UT WoS článku
000881953100001
EID výsledku v databázi Scopus
2-s2.0-85141614955