Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Linear Diophantine Fuzzy Subspaces of a Vector Space

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F24%3A00558820" target="_blank" >RIV/60162694:G43__/24:00558820 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.mdpi.com/journal/mathematics" target="_blank" >http://www.mdpi.com/journal/mathematics</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math11030503" target="_blank" >10.3390/math11030503</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Linear Diophantine Fuzzy Subspaces of a Vector Space

  • Popis výsledku v původním jazyce

    The notion of a linear diophantine fuzzy set as a generalization of a fuzzy set is a mathematical approach that deals with vagueness in decision-making problems. The use of reference parameters associated with validity and non-validity functions in linear diophantine fuzzy sets makes it more applicable to model vagueness in many real-life problems. On the other hand, subspaces of vector spaces are of great importance in many fields of science. The aim of this paper is to combine the two notions. In this regard, we consider the linear diophantine fuzzification of a vector space by introducing and studying the linear diophantine fuzzy subspaces of a vector space. First, we studied the behaviors of linear diophantine fuzzy subspaces of a vector space under a linear diophantine fuzzy set. Second, and by means of the level sets, we found a relationship between the linear diophantine fuzzy subspaces of a vector space and the subspaces of a vector space. Finally, we discuss the linear diophantine fuzzy subspaces of a quotient vector space.

  • Název v anglickém jazyce

    Linear Diophantine Fuzzy Subspaces of a Vector Space

  • Popis výsledku anglicky

    The notion of a linear diophantine fuzzy set as a generalization of a fuzzy set is a mathematical approach that deals with vagueness in decision-making problems. The use of reference parameters associated with validity and non-validity functions in linear diophantine fuzzy sets makes it more applicable to model vagueness in many real-life problems. On the other hand, subspaces of vector spaces are of great importance in many fields of science. The aim of this paper is to combine the two notions. In this regard, we consider the linear diophantine fuzzification of a vector space by introducing and studying the linear diophantine fuzzy subspaces of a vector space. First, we studied the behaviors of linear diophantine fuzzy subspaces of a vector space under a linear diophantine fuzzy set. Second, and by means of the level sets, we found a relationship between the linear diophantine fuzzy subspaces of a vector space and the subspaces of a vector space. Finally, we discuss the linear diophantine fuzzy subspaces of a quotient vector space.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    MATHEMATICS

  • ISSN

    2227-7390

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    9

  • Strana od-do

    503

  • Kód UT WoS článku

    000930871000001

  • EID výsledku v databázi Scopus

    2-s2.0-85147814101