Linear Diophantine Fuzzy Subspaces of a Vector Space
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F24%3A00558820" target="_blank" >RIV/60162694:G43__/24:00558820 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.mdpi.com/journal/mathematics" target="_blank" >http://www.mdpi.com/journal/mathematics</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math11030503" target="_blank" >10.3390/math11030503</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Linear Diophantine Fuzzy Subspaces of a Vector Space
Popis výsledku v původním jazyce
The notion of a linear diophantine fuzzy set as a generalization of a fuzzy set is a mathematical approach that deals with vagueness in decision-making problems. The use of reference parameters associated with validity and non-validity functions in linear diophantine fuzzy sets makes it more applicable to model vagueness in many real-life problems. On the other hand, subspaces of vector spaces are of great importance in many fields of science. The aim of this paper is to combine the two notions. In this regard, we consider the linear diophantine fuzzification of a vector space by introducing and studying the linear diophantine fuzzy subspaces of a vector space. First, we studied the behaviors of linear diophantine fuzzy subspaces of a vector space under a linear diophantine fuzzy set. Second, and by means of the level sets, we found a relationship between the linear diophantine fuzzy subspaces of a vector space and the subspaces of a vector space. Finally, we discuss the linear diophantine fuzzy subspaces of a quotient vector space.
Název v anglickém jazyce
Linear Diophantine Fuzzy Subspaces of a Vector Space
Popis výsledku anglicky
The notion of a linear diophantine fuzzy set as a generalization of a fuzzy set is a mathematical approach that deals with vagueness in decision-making problems. The use of reference parameters associated with validity and non-validity functions in linear diophantine fuzzy sets makes it more applicable to model vagueness in many real-life problems. On the other hand, subspaces of vector spaces are of great importance in many fields of science. The aim of this paper is to combine the two notions. In this regard, we consider the linear diophantine fuzzification of a vector space by introducing and studying the linear diophantine fuzzy subspaces of a vector space. First, we studied the behaviors of linear diophantine fuzzy subspaces of a vector space under a linear diophantine fuzzy set. Second, and by means of the level sets, we found a relationship between the linear diophantine fuzzy subspaces of a vector space and the subspaces of a vector space. Finally, we discuss the linear diophantine fuzzy subspaces of a quotient vector space.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MATHEMATICS
ISSN
2227-7390
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
9
Strana od-do
503
Kód UT WoS článku
000930871000001
EID výsledku v databázi Scopus
2-s2.0-85147814101