Noise Reduction as an Inverse Problem in F-Transform Modelling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AA2302G3M" target="_blank" >RIV/61988987:17610/22:A2302G3M - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007/978-3-031-08974-9_32.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/978-3-031-08974-9_32.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-08974-9_32" target="_blank" >10.1007/978-3-031-08974-9_32</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Noise Reduction as an Inverse Problem in F-Transform Modelling
Popis výsledku v původním jazyce
In this paper, we discuss a special type of fuzzy partitioned space generated by a fuzzy set that is used to enrich the data domain with a notion of closeness. We utilize this notion to sketch the solution to the denoising problem in the discrete, now only 1-D setting, where the Nyquist-Shannon-Kotelnikov sampling theorem in not applicable. The finite-dimensional space with closeness is described by a closeness matrix that transforms discrete one-dimensional signals (considered as functions defined on the space and identified with high-dimensional vectors) into a lower-dimensional vectors. On the basis of this and the corresponding pseudo-inverse transformation, we characterize the signal denoising problem as a type of inverse problem. This opens a new perspective on discrete data processing involving algebraic tools and singular value matrix decomposition. As there are many degrees of freedom in initializing parameters of the chosen model, we restrict ourselves on some special cases. The link between the generating function of the fuzzy partition and a fundamental subspace of the closeness matrix is expressed in terms of Euclidean orthogonality. The theoretical background as well as solutions in particular settings are illustrated by numerical examples.
Název v anglickém jazyce
Noise Reduction as an Inverse Problem in F-Transform Modelling
Popis výsledku anglicky
In this paper, we discuss a special type of fuzzy partitioned space generated by a fuzzy set that is used to enrich the data domain with a notion of closeness. We utilize this notion to sketch the solution to the denoising problem in the discrete, now only 1-D setting, where the Nyquist-Shannon-Kotelnikov sampling theorem in not applicable. The finite-dimensional space with closeness is described by a closeness matrix that transforms discrete one-dimensional signals (considered as functions defined on the space and identified with high-dimensional vectors) into a lower-dimensional vectors. On the basis of this and the corresponding pseudo-inverse transformation, we characterize the signal denoising problem as a type of inverse problem. This opens a new perspective on discrete data processing involving algebraic tools and singular value matrix decomposition. As there are many degrees of freedom in initializing parameters of the chosen model, we restrict ourselves on some special cases. The link between the generating function of the fuzzy partition and a fundamental subspace of the closeness matrix is expressed in terms of Euclidean orthogonality. The theoretical background as well as solutions in particular settings are illustrated by numerical examples.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Information Processing and Management of Uncertainty in Knowledge-Based Systems
ISBN
978-3-031-08973-2
ISSN
1865-0929
e-ISSN
1865-0937
Počet stran výsledku
13
Strana od-do
405-417
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Cham
Místo konání akce
Milan, Italy
Datum konání akce
11. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—