Adaptive Ant Colony Optimization With Node Clustering for the Multidepot Vehicle Routing Problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F24%3A00558866" target="_blank" >RIV/60162694:G43__/24:00558866 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60162694:G42__/24:00558866
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9991848" target="_blank" >https://ieeexplore.ieee.org/document/9991848</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TEVC.2022.3230042" target="_blank" >10.1109/TEVC.2022.3230042</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive Ant Colony Optimization With Node Clustering for the Multidepot Vehicle Routing Problem
Popis výsledku v původním jazyce
This article deals with the novel metaheuristic algorithm based on the Ant Colony Optimization (ACO) principle. It implements several novel mechanisms that improve its overall performance, lower the optimization time, and reduce the negative behavior which is typically connected with ACO-based algorithms (such as prematurely falling into local optima, or the impact of setting of control parameters on the convergence for different problem configurations). The most significant novel techniques, implemented for the first time to solve the Multi-Depot Vehicle Routing Problem (MDVRP), are as follows: (a) node clustering where transition vertices are organized into a set of candidate lists called clusters; (b) adaptive pheromone evaporation which is adapted during optimization according to the diversity of the population of ant solutions (measured by information entropy). Moreover, a new termination condition, based also on the population diversity, is formulated. The effectiveness of the proposed algorithm for the MDVRP is evaluated via a set of experiments on 23 well-known benchmark instances. Performance is compared with several state-of-the-art metaheuristic methods; the results show that the proposed algorithm outperforms these methods in most cases. Furthermore, the novel mechanisms are analyzed and discussed from points of view of performance, optimization time, and convergence. The findings achieved in this article bring new contributions to the very popular ACO-based algorithms; they can be applied to solve not only the MDVRP, but also, if adapted, to related complex NP-hard problems.
Název v anglickém jazyce
Adaptive Ant Colony Optimization With Node Clustering for the Multidepot Vehicle Routing Problem
Popis výsledku anglicky
This article deals with the novel metaheuristic algorithm based on the Ant Colony Optimization (ACO) principle. It implements several novel mechanisms that improve its overall performance, lower the optimization time, and reduce the negative behavior which is typically connected with ACO-based algorithms (such as prematurely falling into local optima, or the impact of setting of control parameters on the convergence for different problem configurations). The most significant novel techniques, implemented for the first time to solve the Multi-Depot Vehicle Routing Problem (MDVRP), are as follows: (a) node clustering where transition vertices are organized into a set of candidate lists called clusters; (b) adaptive pheromone evaporation which is adapted during optimization according to the diversity of the population of ant solutions (measured by information entropy). Moreover, a new termination condition, based also on the population diversity, is formulated. The effectiveness of the proposed algorithm for the MDVRP is evaluated via a set of experiments on 23 well-known benchmark instances. Performance is compared with several state-of-the-art metaheuristic methods; the results show that the proposed algorithm outperforms these methods in most cases. Furthermore, the novel mechanisms are analyzed and discussed from points of view of performance, optimization time, and convergence. The findings achieved in this article bring new contributions to the very popular ACO-based algorithms; they can be applied to solve not only the MDVRP, but also, if adapted, to related complex NP-hard problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/VJ02010036" target="_blank" >VJ02010036: Robotický systém řízený algoritmy umělé inteligence pro zpravodajské a průzkumné účely</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Evolutionary Computation
ISSN
1089-778X
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1866-1880
Kód UT WoS článku
001125199200012
EID výsledku v databázi Scopus
2-s2.0-85146230165