Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Adaptive Ant Colony Optimization With Node Clustering for the Multidepot Vehicle Routing Problem

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F24%3A00558866" target="_blank" >RIV/60162694:G43__/24:00558866 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60162694:G42__/24:00558866

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9991848" target="_blank" >https://ieeexplore.ieee.org/document/9991848</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TEVC.2022.3230042" target="_blank" >10.1109/TEVC.2022.3230042</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Adaptive Ant Colony Optimization With Node Clustering for the Multidepot Vehicle Routing Problem

  • Popis výsledku v původním jazyce

    This article deals with the novel metaheuristic algorithm based on the Ant Colony Optimization (ACO) principle. It implements several novel mechanisms that improve its overall performance, lower the optimization time, and reduce the negative behavior which is typically connected with ACO-based algorithms (such as prematurely falling into local optima, or the impact of setting of control parameters on the convergence for different problem configurations). The most significant novel techniques, implemented for the first time to solve the Multi-Depot Vehicle Routing Problem (MDVRP), are as follows: (a) node clustering where transition vertices are organized into a set of candidate lists called clusters; (b) adaptive pheromone evaporation which is adapted during optimization according to the diversity of the population of ant solutions (measured by information entropy). Moreover, a new termination condition, based also on the population diversity, is formulated. The effectiveness of the proposed algorithm for the MDVRP is evaluated via a set of experiments on 23 well-known benchmark instances. Performance is compared with several state-of-the-art metaheuristic methods; the results show that the proposed algorithm outperforms these methods in most cases. Furthermore, the novel mechanisms are analyzed and discussed from points of view of performance, optimization time, and convergence. The findings achieved in this article bring new contributions to the very popular ACO-based algorithms; they can be applied to solve not only the MDVRP, but also, if adapted, to related complex NP-hard problems.

  • Název v anglickém jazyce

    Adaptive Ant Colony Optimization With Node Clustering for the Multidepot Vehicle Routing Problem

  • Popis výsledku anglicky

    This article deals with the novel metaheuristic algorithm based on the Ant Colony Optimization (ACO) principle. It implements several novel mechanisms that improve its overall performance, lower the optimization time, and reduce the negative behavior which is typically connected with ACO-based algorithms (such as prematurely falling into local optima, or the impact of setting of control parameters on the convergence for different problem configurations). The most significant novel techniques, implemented for the first time to solve the Multi-Depot Vehicle Routing Problem (MDVRP), are as follows: (a) node clustering where transition vertices are organized into a set of candidate lists called clusters; (b) adaptive pheromone evaporation which is adapted during optimization according to the diversity of the population of ant solutions (measured by information entropy). Moreover, a new termination condition, based also on the population diversity, is formulated. The effectiveness of the proposed algorithm for the MDVRP is evaluated via a set of experiments on 23 well-known benchmark instances. Performance is compared with several state-of-the-art metaheuristic methods; the results show that the proposed algorithm outperforms these methods in most cases. Furthermore, the novel mechanisms are analyzed and discussed from points of view of performance, optimization time, and convergence. The findings achieved in this article bring new contributions to the very popular ACO-based algorithms; they can be applied to solve not only the MDVRP, but also, if adapted, to related complex NP-hard problems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/VJ02010036" target="_blank" >VJ02010036: Robotický systém řízený algoritmy umělé inteligence pro zpravodajské a průzkumné účely</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Evolutionary Computation

  • ISSN

    1089-778X

  • e-ISSN

  • Svazek periodika

    27

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    1866-1880

  • Kód UT WoS článku

    001125199200012

  • EID výsledku v databázi Scopus

    2-s2.0-85146230165