Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Adaptive Ant Colony Optimization with node clustering applied to the Travelling Salesman Problem

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG42__%2F23%3A00557902" target="_blank" >RIV/60162694:G42__/23:00557902 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989592:15510/22:73613034

  • Výsledek na webu

    <a href="http://www.elsevier.com/wps/find/journaldescription.cws_home/724666/description#description" target="_blank" >http://www.elsevier.com/wps/find/journaldescription.cws_home/724666/description#description</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.swevo.2022.101056" target="_blank" >10.1016/j.swevo.2022.101056</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Adaptive Ant Colony Optimization with node clustering applied to the Travelling Salesman Problem

  • Popis výsledku v původním jazyce

    This article presents the Ant Colony Optimization algorithm to solve the Travelling Salesman Problem. The proposed algorithm implements three novel techniques to enhance the overall performance, lower the execution time and reduce the negative effects particularly connected with ACO-based methods such as falling into a local optimum and issues with settings of control parameters for different instances. These techniques include (a) the node clustering concept where transition nodes are organised in a set of clusters, (b) adaptive pheromone evaporation controlled dynamically based on the information entropy and (c) the formulation of the new termination condition based on the diversity of solutions in population. To verify the effectiveness of the proposed principles, a number of experiments were conducted using 30 benchmark instances (ranging from 51 to 2,392 nodes with various nodes topologies) taken from the well-known TSPLIB benchmarks and the results are compared with several state-of-the-art ACO-based methods; the proposed algorithm outperforms these rival methods in most cases. The impact of the novel techniques on the behaviour of the algorithm is thoroughly analysed and discussed in respect to the overall performance, execution time and convergence.

  • Název v anglickém jazyce

    Adaptive Ant Colony Optimization with node clustering applied to the Travelling Salesman Problem

  • Popis výsledku anglicky

    This article presents the Ant Colony Optimization algorithm to solve the Travelling Salesman Problem. The proposed algorithm implements three novel techniques to enhance the overall performance, lower the execution time and reduce the negative effects particularly connected with ACO-based methods such as falling into a local optimum and issues with settings of control parameters for different instances. These techniques include (a) the node clustering concept where transition nodes are organised in a set of clusters, (b) adaptive pheromone evaporation controlled dynamically based on the information entropy and (c) the formulation of the new termination condition based on the diversity of solutions in population. To verify the effectiveness of the proposed principles, a number of experiments were conducted using 30 benchmark instances (ranging from 51 to 2,392 nodes with various nodes topologies) taken from the well-known TSPLIB benchmarks and the results are compared with several state-of-the-art ACO-based methods; the proposed algorithm outperforms these rival methods in most cases. The impact of the novel techniques on the behaviour of the algorithm is thoroughly analysed and discussed in respect to the overall performance, execution time and convergence.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Swarm and Evolutionary Computation

  • ISSN

    2210-6502

  • e-ISSN

    2210-6510

  • Svazek periodika

    70

  • Číslo periodika v rámci svazku

    April 2022

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    18

  • Strana od-do

    101056

  • Kód UT WoS článku

    000780758500003

  • EID výsledku v databázi Scopus

    2-s2.0-85126141002