Adaptive Ant Colony Optimization with node clustering applied to the Travelling Salesman Problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG42__%2F23%3A00557902" target="_blank" >RIV/60162694:G42__/23:00557902 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15510/22:73613034
Výsledek na webu
<a href="http://www.elsevier.com/wps/find/journaldescription.cws_home/724666/description#description" target="_blank" >http://www.elsevier.com/wps/find/journaldescription.cws_home/724666/description#description</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.swevo.2022.101056" target="_blank" >10.1016/j.swevo.2022.101056</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive Ant Colony Optimization with node clustering applied to the Travelling Salesman Problem
Popis výsledku v původním jazyce
This article presents the Ant Colony Optimization algorithm to solve the Travelling Salesman Problem. The proposed algorithm implements three novel techniques to enhance the overall performance, lower the execution time and reduce the negative effects particularly connected with ACO-based methods such as falling into a local optimum and issues with settings of control parameters for different instances. These techniques include (a) the node clustering concept where transition nodes are organised in a set of clusters, (b) adaptive pheromone evaporation controlled dynamically based on the information entropy and (c) the formulation of the new termination condition based on the diversity of solutions in population. To verify the effectiveness of the proposed principles, a number of experiments were conducted using 30 benchmark instances (ranging from 51 to 2,392 nodes with various nodes topologies) taken from the well-known TSPLIB benchmarks and the results are compared with several state-of-the-art ACO-based methods; the proposed algorithm outperforms these rival methods in most cases. The impact of the novel techniques on the behaviour of the algorithm is thoroughly analysed and discussed in respect to the overall performance, execution time and convergence.
Název v anglickém jazyce
Adaptive Ant Colony Optimization with node clustering applied to the Travelling Salesman Problem
Popis výsledku anglicky
This article presents the Ant Colony Optimization algorithm to solve the Travelling Salesman Problem. The proposed algorithm implements three novel techniques to enhance the overall performance, lower the execution time and reduce the negative effects particularly connected with ACO-based methods such as falling into a local optimum and issues with settings of control parameters for different instances. These techniques include (a) the node clustering concept where transition nodes are organised in a set of clusters, (b) adaptive pheromone evaporation controlled dynamically based on the information entropy and (c) the formulation of the new termination condition based on the diversity of solutions in population. To verify the effectiveness of the proposed principles, a number of experiments were conducted using 30 benchmark instances (ranging from 51 to 2,392 nodes with various nodes topologies) taken from the well-known TSPLIB benchmarks and the results are compared with several state-of-the-art ACO-based methods; the proposed algorithm outperforms these rival methods in most cases. The impact of the novel techniques on the behaviour of the algorithm is thoroughly analysed and discussed in respect to the overall performance, execution time and convergence.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Swarm and Evolutionary Computation
ISSN
2210-6502
e-ISSN
2210-6510
Svazek periodika
70
Číslo periodika v rámci svazku
April 2022
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
101056
Kód UT WoS článku
000780758500003
EID výsledku v databázi Scopus
2-s2.0-85126141002