Design of a Saving-Energy Fuzzy Logic Controller for a Differential Drive Robot Based on an Optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F24%3A00558960" target="_blank" >RIV/60162694:G43__/24:00558960 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/app13020997" target="_blank" >https://doi.org/10.3390/app13020997</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app13020997" target="_blank" >10.3390/app13020997</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Design of a Saving-Energy Fuzzy Logic Controller for a Differential Drive Robot Based on an Optimization
Popis výsledku v původním jazyce
In the problem of designing a Fuzzy Logic Controller (FLC) for robots in general and a Differential Drive Robot (DDR) in particular, the determination of the parameters of Membership Functions (MFs) and Fuzzy Rules (FRs) is a difficult, complicated, and time-consuming problem because this is mainly based on heuristics and the knowledge of experts. Therefore, this paper provides a new method to efficiently design an FLC for the DDR by using the Genetic Algorithm (GA). Here, the GA is used to generate and optimize both the parameters of MFs and the FRs according to the minimum kinetic energy loss criterion. For this purpose, a program is created in Google Colab((R)) by using the Python language with the help of the "Pymoo" library to not only automatically generate all the suboptimal parameters of MFs and the suboptimal FRs but also the simulate and evaluate different used FLCs. This program is published as an open-source code so that all readers can browse, view, run, and modify the code themselves to design their FLC. The simulation results have shown that the designed FLC is much better than other used FLCs in terms of the minimum kinetic energy loss while other control performances are still good.
Název v anglickém jazyce
Design of a Saving-Energy Fuzzy Logic Controller for a Differential Drive Robot Based on an Optimization
Popis výsledku anglicky
In the problem of designing a Fuzzy Logic Controller (FLC) for robots in general and a Differential Drive Robot (DDR) in particular, the determination of the parameters of Membership Functions (MFs) and Fuzzy Rules (FRs) is a difficult, complicated, and time-consuming problem because this is mainly based on heuristics and the knowledge of experts. Therefore, this paper provides a new method to efficiently design an FLC for the DDR by using the Genetic Algorithm (GA). Here, the GA is used to generate and optimize both the parameters of MFs and the FRs according to the minimum kinetic energy loss criterion. For this purpose, a program is created in Google Colab((R)) by using the Python language with the help of the "Pymoo" library to not only automatically generate all the suboptimal parameters of MFs and the suboptimal FRs but also the simulate and evaluate different used FLCs. This program is published as an open-source code so that all readers can browse, view, run, and modify the code themselves to design their FLC. The simulation results have shown that the designed FLC is much better than other used FLCs in terms of the minimum kinetic energy loss while other control performances are still good.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED SCIENCES-BASEL
ISSN
2076-3417
e-ISSN
2076-3417
Svazek periodika
13
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
23
Strana od-do
997
Kód UT WoS článku
000916738200001
EID výsledku v databázi Scopus
2-s2.0-85146643766