Command and Control System Optimalisation: Using Neural Networks to increase the Efficiency of Command Location Deployment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F25%3A00563202" target="_blank" >RIV/60162694:G43__/25:00563202 - isvavai.cz</a>
Výsledek na webu
<a href="https://lib.unob.cz/KONFERENCE/DK/DK_Sbornik_2024.pdf" target="_blank" >https://lib.unob.cz/KONFERENCE/DK/DK_Sbornik_2024.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Command and Control System Optimalisation: Using Neural Networks to increase the Efficiency of Command Location Deployment
Popis výsledku v původním jazyce
The article deals with the integration of artificial intelligence, specifically neural networks, in optimizing the deployment of command and control (C2) systems in military operations at the tactical level. Central to our research is the improvement of decision-making processes related to the strategic placement of C2 sites, considering a complex array of variables including terrain analysis, deployment of military vehicles and equipment, or adherence to military procedures. Leveraging the capabilities of neural networks, the paper proposes a novel approach to efficiently process these multifaceted data inputs to significantly improve the effectiveness and efficiency of C2 system placement. The methodology involves the development of an AI-driven framework that dynamically adapts to the evolving battlefield environment to ensure optimal command post placement that enhances operational readiness and strategic advantage. This article not only contributes to the ongoing discussion on the application of artificial intelligence in the military context, but also provides practical insights and solutions relevant to the modernization efforts of the armed forces.
Název v anglickém jazyce
Command and Control System Optimalisation: Using Neural Networks to increase the Efficiency of Command Location Deployment
Popis výsledku anglicky
The article deals with the integration of artificial intelligence, specifically neural networks, in optimizing the deployment of command and control (C2) systems in military operations at the tactical level. Central to our research is the improvement of decision-making processes related to the strategic placement of C2 sites, considering a complex array of variables including terrain analysis, deployment of military vehicles and equipment, or adherence to military procedures. Leveraging the capabilities of neural networks, the paper proposes a novel approach to efficiently process these multifaceted data inputs to significantly improve the effectiveness and efficiency of C2 system placement. The methodology involves the development of an AI-driven framework that dynamically adapts to the evolving battlefield environment to ensure optimal command post placement that enhances operational readiness and strategic advantage. This article not only contributes to the ongoing discussion on the application of artificial intelligence in the military context, but also provides practical insights and solutions relevant to the modernization efforts of the armed forces.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
New Approaches to State Security Assurance
ISBN
978-80-7582-512-4
ISSN
—
e-ISSN
—
Počet stran výsledku
189
Strana od-do
10
Název nakladatele
University of Defence
Místo vydání
Brno 2024, Czech republic
Místo konání akce
University of Defence, Brno, Czech republic
Datum konání akce
1. 1. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—