Towards Sustainable Urban Mobility: Leveraging Machine Learning Methods for QA of Meteorological Measurements in the Urban Area
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F25%3A00563478" target="_blank" >RIV/60162694:G43__/25:00563478 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2071-1050/16/13/5713" target="_blank" >https://www.mdpi.com/2071-1050/16/13/5713</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/su16135713" target="_blank" >10.3390/su16135713</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards Sustainable Urban Mobility: Leveraging Machine Learning Methods for QA of Meteorological Measurements in the Urban Area
Popis výsledku v původním jazyce
Non-professional measurement networks offer vast data sources within urban areas that could significantly contribute to urban environment mapping and improve weather prediction in the cities. However, their full potential remains unused due to uncertainties surrounding their positioning, measurement quality, and reliability. This study investigates the potential of machine learning (ML) methods serving as a parallel quality control system, using data from amateur and professional weather stations in Brno, Czech Republic. The research aims to establish a quality control framework for measurement accuracy and assess ML methods for measurement labelling. Utilizing global model data as its main feature, the study examines the effectiveness of ML models in predicting temperature and wind speed, highlighting the challenges and limitations of utilizing such data. Results indicate that while ML models can effectively predict temperature with minimal computational demands, predicting wind speed presents greater complexity due to the higher spatial variability. Hyperparameter tuning does not significantly influence model performance, with changes primarily driven by feature engineering. Despite the improved performance observed in certain models and stations, no model demonstrates superiority in capturing changes not readily apparent in the data. The proposed ensemble approach, coupled with a control ML classification model, offers a potential solution for assessing station quality and enhancing prediction accuracy. However, challenges remain in evaluating individual steps and addressing limitations such as the use of global models and basic feature encoding. Future research aims to apply these methods to larger datasets and automate the evaluation process for scalability and efficiency to enhance monitoring capabilities in urban areas.
Název v anglickém jazyce
Towards Sustainable Urban Mobility: Leveraging Machine Learning Methods for QA of Meteorological Measurements in the Urban Area
Popis výsledku anglicky
Non-professional measurement networks offer vast data sources within urban areas that could significantly contribute to urban environment mapping and improve weather prediction in the cities. However, their full potential remains unused due to uncertainties surrounding their positioning, measurement quality, and reliability. This study investigates the potential of machine learning (ML) methods serving as a parallel quality control system, using data from amateur and professional weather stations in Brno, Czech Republic. The research aims to establish a quality control framework for measurement accuracy and assess ML methods for measurement labelling. Utilizing global model data as its main feature, the study examines the effectiveness of ML models in predicting temperature and wind speed, highlighting the challenges and limitations of utilizing such data. Results indicate that while ML models can effectively predict temperature with minimal computational demands, predicting wind speed presents greater complexity due to the higher spatial variability. Hyperparameter tuning does not significantly influence model performance, with changes primarily driven by feature engineering. Despite the improved performance observed in certain models and stations, no model demonstrates superiority in capturing changes not readily apparent in the data. The proposed ensemble approach, coupled with a control ML classification model, offers a potential solution for assessing station quality and enhancing prediction accuracy. However, challenges remain in evaluating individual steps and addressing limitations such as the use of global models and basic feature encoding. Future research aims to apply these methods to larger datasets and automate the evaluation process for scalability and efficiency to enhance monitoring capabilities in urban areas.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sustainability
ISSN
2071-1050
e-ISSN
2071-1050
Svazek periodika
16
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
22
Strana od-do
5713
Kód UT WoS článku
001269674600001
EID výsledku v databázi Scopus
—