On One Series of the Reciprocals of the Product of two Fibonacci Numbers Whose Indices Differ by an Even Number
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F25%3A00563795" target="_blank" >RIV/60162694:G43__/25:00563795 - isvavai.cz</a>
Výsledek na webu
<a href="https://wseas.com/journals/articles.php?id=9409" target="_blank" >https://wseas.com/journals/articles.php?id=9409</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37394/232021.2024.4.4" target="_blank" >10.37394/232021.2024.4.4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On One Series of the Reciprocals of the Product of two Fibonacci Numbers Whose Indices Differ by an Even Number
Popis výsledku v původním jazyce
This paper is inspired by a very interesting YouTube video by Michael Penn, professor of mathematics at Randolph College in Virginia, USA. He dedicated himself to the popularization of mathematics on his website in addition to his teaching and scientific work at the university and in addition to his scientific work. First, we deal with four specific series of the reciprocals of the product of two Fibonacci numbers whose indices differ by 2, 4, 6, and 8. Then, we generalize these four results to the series of the reciprocals of the product of two Fibonacci numbers whose indices differ by an even number. Finally, we perform a numerical verification of the derived formula using Maple 2020 software. Based on the derived formula, it can be concluded that the series we are dealing with belong to infinite series whose sum can be expressed in closed form.
Název v anglickém jazyce
On One Series of the Reciprocals of the Product of two Fibonacci Numbers Whose Indices Differ by an Even Number
Popis výsledku anglicky
This paper is inspired by a very interesting YouTube video by Michael Penn, professor of mathematics at Randolph College in Virginia, USA. He dedicated himself to the popularization of mathematics on his website in addition to his teaching and scientific work at the university and in addition to his scientific work. First, we deal with four specific series of the reciprocals of the product of two Fibonacci numbers whose indices differ by 2, 4, 6, and 8. Then, we generalize these four results to the series of the reciprocals of the product of two Fibonacci numbers whose indices differ by an even number. Finally, we perform a numerical verification of the derived formula using Maple 2020 software. Based on the derived formula, it can be concluded that the series we are dealing with belong to infinite series whose sum can be expressed in closed form.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
EQUATIONS
ISSN
2944-9146
e-ISSN
2732-9976
Svazek periodika
—
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GR - Řecká republika
Počet stran výsledku
8
Strana od-do
24-31
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—