Hierarchical Cluster Analysis ? Various Approaches to Data Preparation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F13%3A61432" target="_blank" >RIV/60460709:41110/13:61432 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hierarchical Cluster Analysis ? Various Approaches to Data Preparation
Popis výsledku v původním jazyce
The article deals with two various approaches to data preparation to avoid multicollinearity. The aim of the article is to find similarities among the e-communication level of EU states using hierarchical cluster analysis. The original set of fourteen indicators was first reduced on the basis of correlation analysis while in case of high correlation indicator of higher variability was included in further analysis. Secondly the data were transformed using principal component analysis while the principalcomponents are poorly correlated. For further analysis five principal components explaining about 92% of variance were selected. Hierarchical cluster analysis was performed both based on the reduced data set and the principal component scores. Both timesthree clusters were assumed following Pseudo t-Squared and Pseudo F Statistic, but the final clusters were not identical. An important characteristic to compare the two results found was to look at the proportion of variance accounted fo
Název v anglickém jazyce
Hierarchical Cluster Analysis ? Various Approaches to Data Preparation
Popis výsledku anglicky
The article deals with two various approaches to data preparation to avoid multicollinearity. The aim of the article is to find similarities among the e-communication level of EU states using hierarchical cluster analysis. The original set of fourteen indicators was first reduced on the basis of correlation analysis while in case of high correlation indicator of higher variability was included in further analysis. Secondly the data were transformed using principal component analysis while the principalcomponents are poorly correlated. For further analysis five principal components explaining about 92% of variance were selected. Hierarchical cluster analysis was performed both based on the reduced data set and the principal component scores. Both timesthree clusters were assumed following Pseudo t-Squared and Pseudo F Statistic, but the final clusters were not identical. An important characteristic to compare the two results found was to look at the proportion of variance accounted fo
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AGRIS on-line Papers in Economics and Informatics
ISSN
1804-1930
e-ISSN
—
Svazek periodika
V
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
11
Strana od-do
53-63
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—