Hierarchical clustering of RGB surface water images based on MIA-LSI approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F10%3A10224341" target="_blank" >RIV/61989100:27360/10:10224341 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hierarchical clustering of RGB surface water images based on MIA-LSI approach
Popis výsledku v původním jazyce
Multivariate image analysis (MIA) combined with the Latent semantic indexing (LSI) method was used for the retrieval of similar water-related images within a testing database of 126 RGB images. This database set up from the digital photographs of variouswater levels and similar images of ground surfaces and plants was transferred into an image matrix, which was treated by principal component analysis (PCA) based on singular value decomposition (SVD). The high dimensionality of original images given bytheir pixels numbers was reduce to six principal components. Thus characterised images were partitioned into clusters of similar images using hierarchical clustering. The best defined clusters were obtained when the Ward?s method was applied. Images werepartitioned into the two main clusters according to the similar colours of displayed objects. Each main cluster was further partitioned into sub-clusters according to the similar shapes and sizes of the objects.
Název v anglickém jazyce
Hierarchical clustering of RGB surface water images based on MIA-LSI approach
Popis výsledku anglicky
Multivariate image analysis (MIA) combined with the Latent semantic indexing (LSI) method was used for the retrieval of similar water-related images within a testing database of 126 RGB images. This database set up from the digital photographs of variouswater levels and similar images of ground surfaces and plants was transferred into an image matrix, which was treated by principal component analysis (PCA) based on singular value decomposition (SVD). The high dimensionality of original images given bytheir pixels numbers was reduce to six principal components. Thus characterised images were partitioned into clusters of similar images using hierarchical clustering. The best defined clusters were obtained when the Ward?s method was applied. Images werepartitioned into the two main clusters according to the similar colours of displayed objects. Each main cluster was further partitioned into sub-clusters according to the similar shapes and sizes of the objects.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M06047" target="_blank" >1M06047: Centrum pro jakost a spolehlivost výroby</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Water SA
ISSN
0378-4738
e-ISSN
—
Svazek periodika
36
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
ZA - Jihoafrická republika
Počet stran výsledku
7
Strana od-do
—
Kód UT WoS článku
000274194000019
EID výsledku v databázi Scopus
—