An alternative approach towards dealing with uncertainty in project time analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F19%3A79465" target="_blank" >RIV/60460709:41110/19:79465 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
čeština
Název v původním jazyce
An alternative approach towards dealing with uncertainty in project time analysis
Popis výsledku v původním jazyce
Critical path method is a fundamental tool of time analysis in project planning. Due to its deterministic nature, it does not reflect any aspects of uncertainty that might occur in the actual real-world applications. The ways of embedding uncertainty into mathematical model of project time analysis have been widely used, in its basic form represented by probabilistic approach of PERT or GERT. We introduce an alternative viewpoint on uncertainty appearing in activity duration evaluation. First, the stated problem is formulated as a longest path problem in directed acyclic graph in the form of mixed integer linear program. Further on, we take an advantage of two different robust formulations that allow to identify critical scenarios in case any deviations from deterministic values of activity durations should appear. It turns out that different concepts of robustness must be used depending whether the duration of an activity was prolonged or contracted. The resulting scenarios show the worst-case situa
Název v anglickém jazyce
An alternative approach towards dealing with uncertainty in project time analysis
Popis výsledku anglicky
Critical path method is a fundamental tool of time analysis in project planning. Due to its deterministic nature, it does not reflect any aspects of uncertainty that might occur in the actual real-world applications. The ways of embedding uncertainty into mathematical model of project time analysis have been widely used, in its basic form represented by probabilistic approach of PERT or GERT. We introduce an alternative viewpoint on uncertainty appearing in activity duration evaluation. First, the stated problem is formulated as a longest path problem in directed acyclic graph in the form of mixed integer linear program. Further on, we take an advantage of two different robust formulations that allow to identify critical scenarios in case any deviations from deterministic values of activity durations should appear. It turns out that different concepts of robustness must be used depending whether the duration of an activity was prolonged or contracted. The resulting scenarios show the worst-case situa
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
37th International Conference on Mathematical Methods in Economics 2019 Conference proceedings
ISBN
978-80-7394-760-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
433-438
Název nakladatele
University of South Bohemia in České Budějovice, Faculty of Economics
Místo vydání
České Budějovice
Místo konání akce
České Budějovice
Datum konání akce
11. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000507570400072