Fixing Inconsistent Saaty's Matrix using Nonlinear Optimization Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F22%3A91299" target="_blank" >RIV/60460709:41110/22:91299 - isvavai.cz</a>
Výsledek na webu
<a href="https://euro2022espoo.com/conference-programme/" target="_blank" >https://euro2022espoo.com/conference-programme/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fixing Inconsistent Saaty's Matrix using Nonlinear Optimization Model
Popis výsledku v původním jazyce
We revisit the famous Saatys AHP method, where the data inconsistency issue is often present. Saatys pairwise comparison matrix is considered inconsistent if the transitivity of preferences between criteria is not satisfied to an acceptable level. There are ways of measuring the level of matrix inconsistency. When the inconsistency reaches over the critical threshold, it is necessary to make adjustments to the original data. This may be impossible because 1) the decision-maker is not available anymore for re-evaluation 2) the decision-maker is not capable of doing so as it may be hard to recognize the cause of inconsistency, especially in larger matrices. There are various ways of fixing inconsistency in the literature. We propose our own approach, different from the existing one, based on a non-linear optimization model. We suggest changing the original data as little as possible to preserve most of the original information while reaching an acceptable inconsistency level. Our optimization problem i
Název v anglickém jazyce
Fixing Inconsistent Saaty's Matrix using Nonlinear Optimization Model
Popis výsledku anglicky
We revisit the famous Saatys AHP method, where the data inconsistency issue is often present. Saatys pairwise comparison matrix is considered inconsistent if the transitivity of preferences between criteria is not satisfied to an acceptable level. There are ways of measuring the level of matrix inconsistency. When the inconsistency reaches over the critical threshold, it is necessary to make adjustments to the original data. This may be impossible because 1) the decision-maker is not available anymore for re-evaluation 2) the decision-maker is not capable of doing so as it may be hard to recognize the cause of inconsistency, especially in larger matrices. There are various ways of fixing inconsistency in the literature. We propose our own approach, different from the existing one, based on a non-linear optimization model. We suggest changing the original data as little as possible to preserve most of the original information while reaching an acceptable inconsistency level. Our optimization problem i
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EURO 2022 Abstract Book
ISBN
978-951-95254-1-9
ISSN
—
e-ISSN
—
Počet stran výsledku
1
Strana od-do
84-84
Název nakladatele
Aalto University, Espoo Finland
Místo vydání
Espoo
Místo konání akce
Espoo
Datum konání akce
3. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—