Character Segmentation in the Development of Palmyrene Aramaic OCR
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F23%3A97610" target="_blank" >RIV/60460709:41110/23:97610 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.researchgate.net/publication/374469082_Character_Segmentation_in_the_Development_of_Palmyrene_Aramaic_OCR" target="_blank" >https://www.researchgate.net/publication/374469082_Character_Segmentation_in_the_Development_of_Palmyrene_Aramaic_OCR</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-45010-5_7" target="_blank" >10.1007/978-3-031-45010-5_7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Character Segmentation in the Development of Palmyrene Aramaic OCR
Popis výsledku v původním jazyce
In this study, we present the research plan and the segmentation solution in progress for our Palmyrene OCR web and mobile application from sandstone tablet photographs, which will be publicly available on the ml-research.pef.czu.cz web portal in the next steps of the research. In this paper, we compare mathematical segmentation methods with artificial intelligence methods, highlighting the advantages and disadvantages of each solution, and propose a fully automated OCR procedure from photographs using convolutional neural networks exclusively and present a development model of our solution. We also present a partially completed segmentation dataset of the Palmyrene letters to demonstrate the functionality of the proposed procedure. We hope to complete the Palmyrene OCR soon, thus making the writings of ancient Palmyra accessible to the scientific community and the public, signifying progress in the area of Digital Humanities. Since the algorithm is not completely ready yet, we also present its development model here.
Název v anglickém jazyce
Character Segmentation in the Development of Palmyrene Aramaic OCR
Popis výsledku anglicky
In this study, we present the research plan and the segmentation solution in progress for our Palmyrene OCR web and mobile application from sandstone tablet photographs, which will be publicly available on the ml-research.pef.czu.cz web portal in the next steps of the research. In this paper, we compare mathematical segmentation methods with artificial intelligence methods, highlighting the advantages and disadvantages of each solution, and propose a fully automated OCR procedure from photographs using convolutional neural networks exclusively and present a development model of our solution. We also present a partially completed segmentation dataset of the Palmyrene letters to demonstrate the functionality of the proposed procedure. We hope to complete the Palmyrene OCR soon, thus making the writings of ancient Palmyra accessible to the scientific community and the public, signifying progress in the area of Digital Humanities. Since the algorithm is not completely ready yet, we also present its development model here.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Model-Driven Organizational and Business Agility
ISBN
978-3-031-45010-5
ISSN
1865-1356
e-ISSN
—
Počet stran výsledku
16
Strana od-do
80-95
Název nakladatele
Springer
Místo vydání
Cham, Switzerland
Místo konání akce
Zaragoza, Spain
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—