Instance Segmentation of Characters Recognized in Palmyrene Aramaic Inscriptions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F24%3A100972" target="_blank" >RIV/60460709:41110/24:100972 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.techscience.com/CMES/v140n3/57249" target="_blank" >https://www.techscience.com/CMES/v140n3/57249</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.32604/cmes.2024.050791" target="_blank" >10.32604/cmes.2024.050791</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Instance Segmentation of Characters Recognized in Palmyrene Aramaic Inscriptions
Popis výsledku v původním jazyce
This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions, employing two state-of-the-art deep learning algorithms, namely YOLOv8 and Roboflow 3.0. The goal is to contribute to the preservation and understanding of historical texts, showcasing the potential of modern deep learning methods in archaeological research. Our research culminates in several key findings and scientific contributions. We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses of each algorithm in this context. We also created and annotated an extensive dataset of Palmyrene inscriptions, a crucial resource for further research in the field. The dataset serves for training and evaluating the segmentation models. We employ comparative evaluation metrics to quantitatively assess the segmentation results, ensuring the reliability and reproducibility of our findings and we present custom visualization tools for predicted segmentation masks. Our study advances the state of the art in semi-automatic reading of Palmyrene inscriptions and establishes a benchmark for future research. The availability of the Palmyrene dataset and the insights into algorithm performance contribute to the broader understanding of historical text analysis.
Název v anglickém jazyce
Instance Segmentation of Characters Recognized in Palmyrene Aramaic Inscriptions
Popis výsledku anglicky
This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions, employing two state-of-the-art deep learning algorithms, namely YOLOv8 and Roboflow 3.0. The goal is to contribute to the preservation and understanding of historical texts, showcasing the potential of modern deep learning methods in archaeological research. Our research culminates in several key findings and scientific contributions. We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses of each algorithm in this context. We also created and annotated an extensive dataset of Palmyrene inscriptions, a crucial resource for further research in the field. The dataset serves for training and evaluating the segmentation models. We employ comparative evaluation metrics to quantitatively assess the segmentation results, ensuring the reliability and reproducibility of our findings and we present custom visualization tools for predicted segmentation masks. Our study advances the state of the art in semi-automatic reading of Palmyrene inscriptions and establishes a benchmark for future research. The availability of the Palmyrene dataset and the insights into algorithm performance contribute to the broader understanding of historical text analysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CMES - Computer Modeling in Engineering and Sciences
ISSN
1526-1492
e-ISSN
1526-1492
Svazek periodika
140
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
20
Strana od-do
2869-2889
Kód UT WoS článku
001231178000001
EID výsledku v databázi Scopus
2-s2.0-85198637414