Enhancing Cybersecurity Through Comparative Analysis of Deep Learning Models for Anomaly Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F24%3A00379945" target="_blank" >RIV/68407700:21260/24:00379945 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.5220/0012312800003648" target="_blank" >https://doi.org/10.5220/0012312800003648</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0012312800003648" target="_blank" >10.5220/0012312800003648</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhancing Cybersecurity Through Comparative Analysis of Deep Learning Models for Anomaly Detection
Popis výsledku v původním jazyce
With the increasing complexity of cyber attacks, traditional methods for anomaly detection in cybersecurity are insufficient, leading to the necessity of integrating deep learning and neural network approaches. This paper presents a comparative analysis of the most powerful deep learning methods for such anomaly detection. We analysed existing datasets for syslog and dataflow, compared several preprocessing methods and identified their strengths and weaknesses. Additionally, we trained and evaluated several deep learning models to provide a comprehensive overview of the current state-of-the-art in cybersecurity. The CNN model achieves excellent results, with 0.999 supervised and 0.938 semi-supervised F1-score in syslog anomaly detection on the BGL dataset and 0.985 F1-score in dataflow anomaly detection on the NIDS dataset. This research contributes to the field of cybersecurity by aiding researchers and practitioners in selecting effective deep-learning models for robust real-life anomaly detection systems. Our findings highlight the reusability of these models in real-life systems.
Název v anglickém jazyce
Enhancing Cybersecurity Through Comparative Analysis of Deep Learning Models for Anomaly Detection
Popis výsledku anglicky
With the increasing complexity of cyber attacks, traditional methods for anomaly detection in cybersecurity are insufficient, leading to the necessity of integrating deep learning and neural network approaches. This paper presents a comparative analysis of the most powerful deep learning methods for such anomaly detection. We analysed existing datasets for syslog and dataflow, compared several preprocessing methods and identified their strengths and weaknesses. Additionally, we trained and evaluated several deep learning models to provide a comprehensive overview of the current state-of-the-art in cybersecurity. The CNN model achieves excellent results, with 0.999 supervised and 0.938 semi-supervised F1-score in syslog anomaly detection on the BGL dataset and 0.985 F1-score in dataflow anomaly detection on the NIDS dataset. This research contributes to the field of cybersecurity by aiding researchers and practitioners in selecting effective deep-learning models for robust real-life anomaly detection systems. Our findings highlight the reusability of these models in real-life systems.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/TM03000055" target="_blank" >TM03000055: Vícedimenzionální detekce a automatizovaná reakce s využitím umělé inteligence</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 10th International Conference on Information Systems Security and Privacy 2024
ISBN
978-989-758-683-5
ISSN
2184-4356
e-ISSN
2184-4356
Počet stran výsledku
9
Strana od-do
682-690
Název nakladatele
SciTePress
Místo vydání
Madeira
Místo konání akce
Rome
Datum konání akce
26. 2. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—