Comparative Analysis of Deep Learning Models and Preprocessing Techniques for Anomaly Detection in Syslog
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F23%3A00370775" target="_blank" >RIV/68407700:21260/23:00370775 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICICS60529.2023.10330520" target="_blank" >https://doi.org/10.1109/ICICS60529.2023.10330520</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICICS60529.2023.10330520" target="_blank" >10.1109/ICICS60529.2023.10330520</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparative Analysis of Deep Learning Models and Preprocessing Techniques for Anomaly Detection in Syslog
Popis výsledku v původním jazyce
With the increasing number of cybersecurity attacks and their increasing complexity, it is necessary to adapt the detection methods to be able to prevent such attacks. The replacement of traditional detection methods based on machine learning with more advanced deep learning and neural network approaches is the crucial step for this. In this paper, we present a comparative analysis of different deep learning models for anomaly detection in syslog. We analysed existing datasets for system logs and compared several preprocessing methods. We evaluated different deep learning models on those preprocessed datasets to provide a comprehensive overview of the current state-of-the-art in cybersecurity. We achieved the best results with the CNN model with 0.999 F1-score on the BGL dataset showing the great potential in such techniques for the real-life models monitoring the system and detecting anomalies.
Název v anglickém jazyce
Comparative Analysis of Deep Learning Models and Preprocessing Techniques for Anomaly Detection in Syslog
Popis výsledku anglicky
With the increasing number of cybersecurity attacks and their increasing complexity, it is necessary to adapt the detection methods to be able to prevent such attacks. The replacement of traditional detection methods based on machine learning with more advanced deep learning and neural network approaches is the crucial step for this. In this paper, we present a comparative analysis of different deep learning models for anomaly detection in syslog. We analysed existing datasets for system logs and compared several preprocessing methods. We evaluated different deep learning models on those preprocessed datasets to provide a comprehensive overview of the current state-of-the-art in cybersecurity. We achieved the best results with the CNN model with 0.999 F1-score on the BGL dataset showing the great potential in such techniques for the real-life models monitoring the system and detecting anomalies.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/TM03000055" target="_blank" >TM03000055: Vícedimenzionální detekce a automatizovaná reakce s využitím umělé inteligence</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 14th International Conference on Information and Communication Systems (ICICS)
ISBN
979-8-3503-0786-3
ISSN
2471-125X
e-ISSN
2573-3346
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
IEEE Jordan Section
Místo vydání
—
Místo konání akce
Irbid
Datum konání akce
21. 11. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—