Benchmark of Data Preprocessing Methods for Imbalanced Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00363255" target="_blank" >RIV/68407700:21230/22:00363255 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/BigData55660.2022.10021118" target="_blank" >https://doi.org/10.1109/BigData55660.2022.10021118</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/BigData55660.2022.10021118" target="_blank" >10.1109/BigData55660.2022.10021118</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Benchmark of Data Preprocessing Methods for Imbalanced Classification
Popis výsledku v původním jazyce
Severe class imbalance is one of the main conditions that make machine learning in cybersecurity difficult. A variety of dataset preprocessing methods have been introduced over the years. These methods modify the training dataset by oversampling, undersampling or a combination of both to improve the predictive performance of classifiers trained on this dataset. Although these methods are used in cybersecurity occasionally, a comprehensive, unbiased benchmark comparing their performance over a variety of cybersecurity problems is missing. This paper presents a benchmark of 16 preprocessing methods on six cybersecurity datasets together with 17 public imbalanced datasets from other domains. We test the methods under multiple hyperparameter configurations and use an AutoML system to train classifiers on the preprocessed datasets, which reduces potential bias from specific hyperparameter or classifier choices. Special consideration is also given to evaluating the methods using appropriate performance measures that are good proxies for practical performance in real-world cybersecurity systems. The main findings of our study are: 1) Most of the time, a data preprocessing method that improves classification performance exists. 2) Baseline approach of doing nothing outperformed a large portion of methods in the benchmark. 3) Oversampling methods generally outperform undersampling methods. 4) The most significant performance gains are brought by the standard SMOTE algorithm and more complicated methods provide mainly incremental improvements at the cost of often worse computational performance.
Název v anglickém jazyce
Benchmark of Data Preprocessing Methods for Imbalanced Classification
Popis výsledku anglicky
Severe class imbalance is one of the main conditions that make machine learning in cybersecurity difficult. A variety of dataset preprocessing methods have been introduced over the years. These methods modify the training dataset by oversampling, undersampling or a combination of both to improve the predictive performance of classifiers trained on this dataset. Although these methods are used in cybersecurity occasionally, a comprehensive, unbiased benchmark comparing their performance over a variety of cybersecurity problems is missing. This paper presents a benchmark of 16 preprocessing methods on six cybersecurity datasets together with 17 public imbalanced datasets from other domains. We test the methods under multiple hyperparameter configurations and use an AutoML system to train classifiers on the preprocessed datasets, which reduces potential bias from specific hyperparameter or classifier choices. Special consideration is also given to evaluating the methods using appropriate performance measures that are good proxies for practical performance in real-world cybersecurity systems. The main findings of our study are: 1) Most of the time, a data preprocessing method that improves classification performance exists. 2) Baseline approach of doing nothing outperformed a large portion of methods in the benchmark. 3) Oversampling methods generally outperform undersampling methods. 4) The most significant performance gains are brought by the standard SMOTE algorithm and more complicated methods provide mainly incremental improvements at the cost of often worse computational performance.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2022 IEEE International Conference on Big Data
ISBN
978-1-6654-8045-1
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
2970-2979
Název nakladatele
IEEE Xplore
Místo vydání
—
Místo konání akce
Osaka
Datum konání akce
17. 12. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—