Comparison of Anomaly Detectors: Context Matters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00352126" target="_blank" >RIV/68407700:21230/22:00352126 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/22:00352126
Výsledek na webu
<a href="https://doi.org/10.1109/TNNLS.2021.3116269" target="_blank" >https://doi.org/10.1109/TNNLS.2021.3116269</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TNNLS.2021.3116269" target="_blank" >10.1109/TNNLS.2021.3116269</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of Anomaly Detectors: Context Matters
Popis výsledku v původním jazyce
Deep generative models are challenging the classical methods in the field of anomaly detection nowadays. Every newly published method provides evidence of outperforming its predecessors, sometimes with contradictory results. The objective of this article is twofold: to compare anomaly detection methods of various paradigms with a focus on deep generative models and identification of sources of variability that can yield different results. The methods were compared on popular tabular and image datasets. We identified that the main sources of variability are the experimental conditions: 1) the type of dataset (tabular or image) and the nature of anomalies (statistical or semantic) and 2) strategy of selection of hyperparameters, especially the number of available anomalies in the validation set. Methods perform differently in different contexts, i.e., under a different combination of experimental conditions together with computational time. This explains the variability of the previous results and highlights the importance of careful specification of the context in the publication of a new method. All our code and results are available for download.
Název v anglickém jazyce
Comparison of Anomaly Detectors: Context Matters
Popis výsledku anglicky
Deep generative models are challenging the classical methods in the field of anomaly detection nowadays. Every newly published method provides evidence of outperforming its predecessors, sometimes with contradictory results. The objective of this article is twofold: to compare anomaly detection methods of various paradigms with a focus on deep generative models and identification of sources of variability that can yield different results. The methods were compared on popular tabular and image datasets. We identified that the main sources of variability are the experimental conditions: 1) the type of dataset (tabular or image) and the nature of anomalies (statistical or semantic) and 2) strategy of selection of hyperparameters, especially the number of available anomalies in the validation set. Methods perform differently in different contexts, i.e., under a different combination of experimental conditions together with computational time. This explains the variability of the previous results and highlights the importance of careful specification of the context in the publication of a new method. All our code and results are available for download.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Neural Networks and Learning Systems
ISSN
2162-237X
e-ISSN
2162-2388
Svazek periodika
33
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
2494-2507
Kód UT WoS článku
000732313900001
EID výsledku v databázi Scopus
2-s2.0-85117345443