A deep CNN model for anomaly detection and localization in wireless capsule endoscopy images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018283" target="_blank" >RIV/62690094:18450/21:50018283 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11150/21:10434839 RIV/00179906:_____/21:10434839
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0010482521005837" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0010482521005837</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compbiomed.2021.104789" target="_blank" >10.1016/j.compbiomed.2021.104789</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A deep CNN model for anomaly detection and localization in wireless capsule endoscopy images
Popis výsledku v původním jazyce
Wireless capsule endoscopy (WCE) is one of the most efficient methods for the examination of gastrointestinal tracts. Computer-aided intelligent diagnostic tools alleviate the challenges faced during manual inspection of long WCE videos. Several approaches have been proposed in the literature for the automatic detection and localization of anomalies in WCE images. Some of them focus on specific anomalies such as bleeding, polyp, lesion, etc. However, relatively fewer generic methods have been proposed to detect all those common anomalies simultaneously. In this paper, a deep convolutional neural network (CNN) based model ‘WCENet’ is proposed for anomaly detection and localization in WCE images. The model works in two phases. In the first phase, a simple and efficient attention-based CNN classifies an image into one of the four categories: polyp, vascular, inflammatory, or normal. If the image is classified in one of the abnormal categories, it is processed in the second phase for the anomaly localization. Fusion of Grad-CAM++ and a custom SegNet is used for anomalous region segmentation in the abnormal image. WCENet classifier attains accuracy and area under receiver operating characteristic of 98% and 99%. The WCENet segmentation model obtains a frequency weighted intersection over union of 81%, and an average dice score of 56% on the KID dataset. WCENet outperforms nine different state-of-the-art conventional machine learning and deep learning models on the KID dataset. The proposed model demonstrates potential for clinical applications. © 2021 Elsevier Ltd
Název v anglickém jazyce
A deep CNN model for anomaly detection and localization in wireless capsule endoscopy images
Popis výsledku anglicky
Wireless capsule endoscopy (WCE) is one of the most efficient methods for the examination of gastrointestinal tracts. Computer-aided intelligent diagnostic tools alleviate the challenges faced during manual inspection of long WCE videos. Several approaches have been proposed in the literature for the automatic detection and localization of anomalies in WCE images. Some of them focus on specific anomalies such as bleeding, polyp, lesion, etc. However, relatively fewer generic methods have been proposed to detect all those common anomalies simultaneously. In this paper, a deep convolutional neural network (CNN) based model ‘WCENet’ is proposed for anomaly detection and localization in WCE images. The model works in two phases. In the first phase, a simple and efficient attention-based CNN classifies an image into one of the four categories: polyp, vascular, inflammatory, or normal. If the image is classified in one of the abnormal categories, it is processed in the second phase for the anomaly localization. Fusion of Grad-CAM++ and a custom SegNet is used for anomalous region segmentation in the abnormal image. WCENet classifier attains accuracy and area under receiver operating characteristic of 98% and 99%. The WCENet segmentation model obtains a frequency weighted intersection over union of 81%, and an average dice score of 56% on the KID dataset. WCENet outperforms nine different state-of-the-art conventional machine learning and deep learning models on the KID dataset. The proposed model demonstrates potential for clinical applications. © 2021 Elsevier Ltd
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF18_069%2F0010054" target="_blank" >EF18_069/0010054: IT4Neuro(degeneration)</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers in Biology and Medicine
ISSN
0010-4825
e-ISSN
—
Svazek periodika
137
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
"Article number: 104789"
Kód UT WoS článku
000703473200004
EID výsledku v databázi Scopus
2-s2.0-85113615106