Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Detection of abnormality in wireless capsule endoscopy images using fractal features

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50017259" target="_blank" >RIV/62690094:18450/20:50017259 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00179906:_____/20:10420606 RIV/00216208:11150/20:10420606

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S001048252030425X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S001048252030425X?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.compbiomed.2020.104094" target="_blank" >10.1016/j.compbiomed.2020.104094</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Detection of abnormality in wireless capsule endoscopy images using fractal features

  • Popis výsledku v původním jazyce

    One of the most recent non-invasive technologies to examine the gastrointestinal tract is wireless capsule endoscopy (WCE). As there are thousands of endoscopic images in an 8–15 h long video, an evaluator has to pay constant attention for a relatively long time (60–120 min). Therefore the possibility of the presence of pathological findings in a few images (displayed for evaluation for a few seconds only) brings a significant risk of missing the pathology with all negative consequences for the patient. Hence, manually reviewing a video to identify abnormal images is not only a tedious and time consuming task that overwhelms human attention but also is error prone. In this paper, a method is proposed for the automatic detection of abnormal WCE images. The differential box counting method is used for the extraction of fractal dimension (FD) of WCE images and the random forest based ensemble classifier is used for the identification of abnormal frames. The FD is a well-known technique for extraction of features related to texture, smoothness, and roughness. In this paper, FDs are extracted from pixel-blocks of WCE images and are fed to the classifier for identification of images with abnormalities. To determine a suitable pixel block size for FD feature extraction, various sizes of blocks are considered and are fed into six frequently used classifiers separately, and the block size of 7×7 giving the best performance is empirically determined. Further, the selection of the random forest ensemble classifier is also done using the same empirical study. Performance of the proposed method is evaluated on two datasets containing WCE frames. Results demonstrate that the proposed method outperforms some of the state-of-the-art methods with AUC of 85% and 99% on Dataset-I and Dataset-II respectively. © 2020 Elsevier Ltd

  • Název v anglickém jazyce

    Detection of abnormality in wireless capsule endoscopy images using fractal features

  • Popis výsledku anglicky

    One of the most recent non-invasive technologies to examine the gastrointestinal tract is wireless capsule endoscopy (WCE). As there are thousands of endoscopic images in an 8–15 h long video, an evaluator has to pay constant attention for a relatively long time (60–120 min). Therefore the possibility of the presence of pathological findings in a few images (displayed for evaluation for a few seconds only) brings a significant risk of missing the pathology with all negative consequences for the patient. Hence, manually reviewing a video to identify abnormal images is not only a tedious and time consuming task that overwhelms human attention but also is error prone. In this paper, a method is proposed for the automatic detection of abnormal WCE images. The differential box counting method is used for the extraction of fractal dimension (FD) of WCE images and the random forest based ensemble classifier is used for the identification of abnormal frames. The FD is a well-known technique for extraction of features related to texture, smoothness, and roughness. In this paper, FDs are extracted from pixel-blocks of WCE images and are fed to the classifier for identification of images with abnormalities. To determine a suitable pixel block size for FD feature extraction, various sizes of blocks are considered and are fed into six frequently used classifiers separately, and the block size of 7×7 giving the best performance is empirically determined. Further, the selection of the random forest ensemble classifier is also done using the same empirical study. Performance of the proposed method is evaluated on two datasets containing WCE frames. Results demonstrate that the proposed method outperforms some of the state-of-the-art methods with AUC of 85% and 99% on Dataset-I and Dataset-II respectively. © 2020 Elsevier Ltd

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF18_069%2F0010054" target="_blank" >EF18_069/0010054: IT4Neuro(degeneration)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers in Biology and Medicine

  • ISSN

    0010-4825

  • e-ISSN

  • Svazek periodika

    127

  • Číslo periodika v rámci svazku

    December

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

    "Article number 104094"

  • Kód UT WoS článku

    000603363600001

  • EID výsledku v databázi Scopus

    2-s2.0-85094881400