Uncertainty-adjusted Inductive Matrix Completion with Graph Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00368260" target="_blank" >RIV/68407700:21240/23:00368260 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3604915.3610654" target="_blank" >https://doi.org/10.1145/3604915.3610654</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3604915.3610654" target="_blank" >10.1145/3604915.3610654</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Uncertainty-adjusted Inductive Matrix Completion with Graph Neural Networks
Popis výsledku v původním jazyce
We propose a robust recommender systems model which performs matrix completion and a ratings-wise uncertainty estimation jointly. Whilst the prediction module is purely based on an implicit low-rank assumption imposed via nuclear norm regularization, our loss function is augmented by an uncertainty estimation module which learns an anomaly score for each individual rating via a Graph Neural Network: data points deemed more anomalous by the GNN are downregulated in the loss function used to train the low-rank module. The whole model is trained in an end-to-end fashion, allowing the anomaly detection module to tap on the supervised information available in the form of ratings. Thus, our model’s predictors enjoy the favourable generalization properties that come with being chosen from small function space (i.e., low-rank matrices), whilst exhibiting the robustness to outliers and flexibility that comes with deep learning methods. Furthermore, the anomaly scores themselves contain valuable qualitative information. Experiments on various real-life datasets demonstrate that our model outperforms standard matrix completion and other baselines, confirming the usefulness of the anomaly detection module.
Název v anglickém jazyce
Uncertainty-adjusted Inductive Matrix Completion with Graph Neural Networks
Popis výsledku anglicky
We propose a robust recommender systems model which performs matrix completion and a ratings-wise uncertainty estimation jointly. Whilst the prediction module is purely based on an implicit low-rank assumption imposed via nuclear norm regularization, our loss function is augmented by an uncertainty estimation module which learns an anomaly score for each individual rating via a Graph Neural Network: data points deemed more anomalous by the GNN are downregulated in the loss function used to train the low-rank module. The whole model is trained in an end-to-end fashion, allowing the anomaly detection module to tap on the supervised information available in the form of ratings. Thus, our model’s predictors enjoy the favourable generalization properties that come with being chosen from small function space (i.e., low-rank matrices), whilst exhibiting the robustness to outliers and flexibility that comes with deep learning methods. Furthermore, the anomaly scores themselves contain valuable qualitative information. Experiments on various real-life datasets demonstrate that our model outperforms standard matrix completion and other baselines, confirming the usefulness of the anomaly detection module.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
RecSys '23: Proceedings of the 17th ACM Conference on Recommender Systems
ISBN
979-8-4007-0241-9
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1169-1174
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
Singapur
Datum konání akce
18. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001156630300147