Orthogonal Approximation of Marginal Likelihood of Generative Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00522204" target="_blank" >RIV/67985556:_____/19:00522204 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/19:00339857
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Orthogonal Approximation of Marginal Likelihood of Generative Models
Popis výsledku v původním jazyce
This paper presents a new approximation of the marginal likelihood of generative models which is used as a score for anomaly detection. The score is motivated by the shortcoming of the popular reconstruction error that it can behave arbitrarily outside the known samples. The proposed score corrects this by orthogonal combination of the reconstruction error and the likelihood in the latent space. As experimentally shown on benchmark problems from anomaly detection and illustrated on a toy problem, this combination lends the score robustness to outliers. Generative models evaluated with this score outperformed the competing methods especially in tasks of learning distribution from data corrupted by anomalies. Finally, the score is compatible with contemporary generative models, namely variational auto-encoders and generative adversarial networks
Název v anglickém jazyce
Orthogonal Approximation of Marginal Likelihood of Generative Models
Popis výsledku anglicky
This paper presents a new approximation of the marginal likelihood of generative models which is used as a score for anomaly detection. The score is motivated by the shortcoming of the popular reconstruction error that it can behave arbitrarily outside the known samples. The proposed score corrects this by orthogonal combination of the reconstruction error and the likelihood in the latent space. As experimentally shown on benchmark problems from anomaly detection and illustrated on a toy problem, this combination lends the score robustness to outliers. Generative models evaluated with this score outperformed the competing methods especially in tasks of learning distribution from data corrupted by anomalies. Finally, the score is compatible with contemporary generative models, namely variational auto-encoders and generative adversarial networks
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů