Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Orthogonal Approximation of Marginal Likelihood of Generative Models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00522204" target="_blank" >RIV/67985556:_____/19:00522204 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21230/19:00339857

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Orthogonal Approximation of Marginal Likelihood of Generative Models

  • Popis výsledku v původním jazyce

    This paper presents a new approximation of the marginal likelihood of generative models which is used as a score for anomaly detection. The score is motivated by the shortcoming of the popular reconstruction error that it can behave arbitrarily outside the known samples. The proposed score corrects this by orthogonal combination of the reconstruction error and the likelihood in the latent space. As experimentally shown on benchmark problems from anomaly detection and illustrated on a toy problem, this combination lends the score robustness to outliers. Generative models evaluated with this score outperformed the competing methods especially in tasks of learning distribution from data corrupted by anomalies. Finally, the score is compatible with contemporary generative models, namely variational auto-encoders and generative adversarial networks

  • Název v anglickém jazyce

    Orthogonal Approximation of Marginal Likelihood of Generative Models

  • Popis výsledku anglicky

    This paper presents a new approximation of the marginal likelihood of generative models which is used as a score for anomaly detection. The score is motivated by the shortcoming of the popular reconstruction error that it can behave arbitrarily outside the known samples. The proposed score corrects this by orthogonal combination of the reconstruction error and the likelihood in the latent space. As experimentally shown on benchmark problems from anomaly detection and illustrated on a toy problem, this combination lends the score robustness to outliers. Generative models evaluated with this score outperformed the competing methods especially in tasks of learning distribution from data corrupted by anomalies. Finally, the score is compatible with contemporary generative models, namely variational auto-encoders and generative adversarial networks

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů