Orthogonal Approximation of Marginal Likelihood of Generative Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00339857" target="_blank" >RIV/68407700:21230/19:00339857 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/19:00522204
Výsledek na webu
<a href="http://bayesiandeeplearning.org/2019/papers/48.pdf" target="_blank" >http://bayesiandeeplearning.org/2019/papers/48.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Orthogonal Approximation of Marginal Likelihood of Generative Models
Popis výsledku v původním jazyce
This paper presents a new approximation of the marginal likelihood of generativemodels which is used as a score for anomaly detection. The score is motivatedby the shortcoming of the popular reconstruction error that it can behave arbitrar-ily outside the known samples. The proposed score corrects this by orthogonalcombination of the reconstruction error and the likelihood in the latent space. Asexperimentally shown on benchmark problems from anomaly detection and illus-trated on a toy problem, this combination lends the score robustness to outliers.Generative models evaluated with this score outperformed the competing meth-ods especially in tasks of learning distribution from data corrupted by anomalies.Finally, the score is compatible with contemporary generative models, namelyvariational auto-encoders and generative adversarial networks.
Název v anglickém jazyce
Orthogonal Approximation of Marginal Likelihood of Generative Models
Popis výsledku anglicky
This paper presents a new approximation of the marginal likelihood of generativemodels which is used as a score for anomaly detection. The score is motivatedby the shortcoming of the popular reconstruction error that it can behave arbitrar-ily outside the known samples. The proposed score corrects this by orthogonalcombination of the reconstruction error and the likelihood in the latent space. Asexperimentally shown on benchmark problems from anomaly detection and illus-trated on a toy problem, this combination lends the score robustness to outliers.Generative models evaluated with this score outperformed the competing meth-ods especially in tasks of learning distribution from data corrupted by anomalies.Finally, the score is compatible with contemporary generative models, namelyvariational auto-encoders and generative adversarial networks.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů