Generalized Differentiable RANSAC
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00370527" target="_blank" >RIV/68407700:21230/23:00370527 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICCV51070.2023.01618" target="_blank" >https://doi.org/10.1109/ICCV51070.2023.01618</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCV51070.2023.01618" target="_blank" >10.1109/ICCV51070.2023.01618</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generalized Differentiable RANSAC
Popis výsledku v původním jazyce
We propose del-RANSAC, a generalized differentiable RANSAC that allows learning the entire randomized robust estimation pipeline. The proposed approach enables the use of relaxation techniques for estimating the gradients in the sampling distribution, which are then propagated through a differentiable solver. The trainable quality function marginalizes over the scores from all the models estimated within del-RANSAC to guide the network learning accurate and useful inlier probabilities or to train feature detection and matching networks. Our method directly maximizes the probability of drawing a good hypothesis, allowing us to learn better sampling distributions. We test del-RANSAC on various real-world scenarios on fundamental and essential matrix estimation, and 3D point cloud registration, outdoors and indoors, with handcrafted and learning-based features. It is superior to the state-of-the-art in terms of accuracy while running at a similar speed to its less accurate alternatives. The code and trained models are available at https://github.com/weitong8591/differentiable_ransac.
Název v anglickém jazyce
Generalized Differentiable RANSAC
Popis výsledku anglicky
We propose del-RANSAC, a generalized differentiable RANSAC that allows learning the entire randomized robust estimation pipeline. The proposed approach enables the use of relaxation techniques for estimating the gradients in the sampling distribution, which are then propagated through a differentiable solver. The trainable quality function marginalizes over the scores from all the models estimated within del-RANSAC to guide the network learning accurate and useful inlier probabilities or to train feature detection and matching networks. Our method directly maximizes the probability of drawing a good hypothesis, allowing us to learn better sampling distributions. We test del-RANSAC on various real-world scenarios on fundamental and essential matrix estimation, and 3D point cloud registration, outdoors and indoors, with handcrafted and learning-based features. It is superior to the state-of-the-art in terms of accuracy while running at a similar speed to its less accurate alternatives. The code and trained models are available at https://github.com/weitong8591/differentiable_ransac.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICCV2023: Proceedings of the International Conference on Computer Vision
ISBN
979-8-3503-0719-1
ISSN
1550-5499
e-ISSN
2380-7504
Počet stran výsledku
12
Strana od-do
17603-17614
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Paris
Datum konání akce
2. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001169500502021