Adaptive Reordering Sampler with Neurally Guided MAGSAC
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00369997" target="_blank" >RIV/68407700:21230/23:00369997 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICCV51070.2023.01665" target="_blank" >https://doi.org/10.1109/ICCV51070.2023.01665</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCV51070.2023.01665" target="_blank" >10.1109/ICCV51070.2023.01665</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive Reordering Sampler with Neurally Guided MAGSAC
Popis výsledku v původním jazyce
We propose a new sampler for robust estimators that always selects the sample with the highest probability of consisting only of inliers. After every unsuccessful iteration, the inlier probabilities are updated in a principled way via a Bayesian approach. The probabilities obtained by the deep network are used as prior (so-called neural guidance) inside the sampler. Moreover, we introduce a new loss that exploits, in a geometrically justifiable manner, the orientation and scale that can be estimated for any type of feature, e.g., SIFT or SuperPoint, to estimate two-view geometry. The new loss helps to learn higher-order information about the underlying scene geometry. Benefiting from the new sampler and the proposed loss, we combine the neural guidance with the state-of-the-art MAGSAC++. Adaptive Reordering Sampler with Neurally Guided MAGSAC (ARS-MAGSAC) is superior to the state-of-the-art in terms of accuracy and run-time on the PhotoTourism and KITTI datasets for essential and fundamental matrix estimation. The code and trained models are available at https://github.com/weitong8591/ars_magsac.
Název v anglickém jazyce
Adaptive Reordering Sampler with Neurally Guided MAGSAC
Popis výsledku anglicky
We propose a new sampler for robust estimators that always selects the sample with the highest probability of consisting only of inliers. After every unsuccessful iteration, the inlier probabilities are updated in a principled way via a Bayesian approach. The probabilities obtained by the deep network are used as prior (so-called neural guidance) inside the sampler. Moreover, we introduce a new loss that exploits, in a geometrically justifiable manner, the orientation and scale that can be estimated for any type of feature, e.g., SIFT or SuperPoint, to estimate two-view geometry. The new loss helps to learn higher-order information about the underlying scene geometry. Benefiting from the new sampler and the proposed loss, we combine the neural guidance with the state-of-the-art MAGSAC++. Adaptive Reordering Sampler with Neurally Guided MAGSAC (ARS-MAGSAC) is superior to the state-of-the-art in terms of accuracy and run-time on the PhotoTourism and KITTI datasets for essential and fundamental matrix estimation. The code and trained models are available at https://github.com/weitong8591/ars_magsac.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICCV2023: Proceedings of the International Conference on Computer Vision
ISBN
979-8-3503-0719-1
ISSN
1550-5499
e-ISSN
2380-7504
Počet stran výsledku
11
Strana od-do
18117-18127
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Paris
Datum konání akce
2. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001169500502068